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a b s t r a c t

In the field of classification, classification difficulty of instances is one of vital factors that influence the
performance of classifiers, however it has been totally neglected. In this paper, a new performance
measure for classification algorithms based on Receiver Operator Characteristic (ROC) curves is proposed
with the ability of incorporating the information of difficulty. First, a new ROC curve with the information
on classification difficulty is defined, which is abbreviated as diROC curve. The curve is constructed in a
two-dimensional graph, on which weighted true positive rate is plotted on Y-axis and weighted false
positive rate is plotted on X-axis. The weights of true positive rates are proportional to classification
difficulty index, while those of false positive rates are inversely proportional to classification difficulty
index. Then, the Area Under diROC Curves, or simply diAUC, is defined to represent the performance of
classifiers quantitatively. We test the diROC curves and diAUC on real-word datasets, the experimental
results suggest that they are insensitive to changes in class distribution, and superior to traditional ROC
curves and AUC in terms of discrimination.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Receiver Operator Characteristic (ROC) analysis was initially
developed in the field of signal detection as a means of judging
whether a blip on the screen represents an enemy, a friend, or noise
[1,2]. Then its use was broadened in the 1970s to the biomedical field
to interpret medical test results [3–5]. Now, ROC curves have become
one of the widely used tools in the performance assessment, and
parameter optimization of classifiers [6]. At first, ROC curves are
specialized for two-class (or binary) classifiers. But now, many
methods have been invented to modify ROC curves to make them
hold for validating multi-class classifiers [7–9]. In imprecise environ-
ments, ROC curves are particularly useful, because they provide the
means for comparing algorithms over a range of operating conditions.
However, there is not always dominating relationship between two
ROC curves under any operation condition, so the area under the ROC
curve (AUC) is invented as a summary of ROC curve. And now it has
become a standard measure in this field, since it is invariant to
operating conditions [10].

As class imbalance exerts a serious impact on the performance
of classification models, it has been extensively studied recently
[11,12]. Liu et al. proposed two novel undersampling based algo-
rithms which are free of the deficiency that many majority class
examples are ignored [13]. In addition, class imbalance should be
valued in the evaluation of classifiers as well. Fortunately, another
interest of ROC curves is that they are insensitive to changes in
class distribution, which makes ROC curves more competent in
some fields where class imbalance is frequently observed [14,15].

Recently, some scholars noted that instances should be dealt with
differently. Guyon et al. proposed to group instances into two cate-
gories based on typical vs. informative [16]. Li et al. argued that
instances should be grouped into three categories: typical, informa-
tive, and noisy [17]. Meler et al. grouped instances into easy ones and
hard ones [18]. After these operations are brought into learning
algorithm, the dataset size can be reduced without affecting the
learning performance. When analyzing the performance of classifiers,
researchers also argue that it is necessary to treat instance differently.
Turney summarized the cost of misclassification errors in inductive
concept learning [19]. McDonald proposed a Mean Subjective Utility
(MSU) score to measure a classifiers performance with respect to a
given data sample under a known cost structure [20]. Here we would
like to demonstrate that the performance analysis of classifiers needs
to take the classification difficulty of each instance into account.
Assume that there are two classifiers c1 and c2 for medical diagnosis,
and both of their classification accuracy are 70%. However, if the cases
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that misdiagnosed by c1 are easy and the cases that misdiagnosed by
c2 are difficult, c1 is not a reliable model. We think c1 does not obey
the natural principle that easy instances are correctly classified with a
larger probability comparing to difficult ones. In effect, many instances
are very difficult to be classified both for human being and automatic
algorithms because they contain confusing features and it may be very
difficult to make correct classification in the current feature space. It is
acceptable to misclassify these difficult instances. Hence, it is rea-
sonable that c1 is given a more severe punishment and receives a
lower rating than c2 from performance evaluation measures. Unfor-
tunately, though the issue is very important in the assessment of the
performance of classifiers, the existing ROC analysis fails in reflecting
this feature. In this paper, we invent a reliable measure for predicting
the performance of classifiers which incorporates classification diffi-
culty. The proposed method is an upgrade version of ROC curve and
AUC, which are denoted as diROC curve and diAUC, respectively.

The main features of diROC analysis are summarized as follows:
(1) the diROC curve is the trace of weighted false positive rate and
weighted true positive on a bi-dimensional space. A diROC curve
closer to the point (0, 1) implies a better performance of classifi-
cation; (2) diAUC is within the interval of [0, 1]; (3) diAUC is also
invariant to operating conditions; (4) as diROC curve takes clas-
sification difficulty into account, it provides comparably high dis-
criminating evaluation.

In the proposed measure, how to get the classification difficulty of
each instance is a key point. As nearly none of existing dataset pro-
vides such information, we need to predict the information based on
features of instances. In the paper, classification applications are
classified into two catalogues according to whether the true label (i.e.
“gold standard”) of each instance is known. Different prediction rules
are designed for the two catalogues, based on which instances' clas-
sification difficulty can be easily achieved.

The newly established analysis method in our paper may spur new
research in machine learning and other related fields in which the
classification is needed. First of all, the idea of incorporating the
classification difficulty can be exerted on other measures, such as
precision and accuracy. In addition, we can redesign the existing
classification algorithms which are based on optimizing performance
evaluation measures [21–23]. Ling and Zhang reported that AUC
provides a more discriminating evaluation than accuracy does, so they
proposed an AUC-based Bayesian learning algorithm, in which AUC is
maximized [21]. Guvenir and Kurtcephe invented a supervised algo-
rithm, which is called ranking instances by maximizing the area under
the ROC curve (RIMARC) [23]. Results in this paper imply that we
should design learning algorithms by maximizing diAUC.

The rest of the paper is constructed as follows: first we briefly
explain the background of this work in Section 2; then we present a
variant of ROC curve which is denoted as the diROC curve in Section 3.
The area under diROC curve (diAUC) is also defined in this section;
Section 4 lists some properties of the diROC curve and diAUC; in
Section 5, we test the diROC curve and diAUC experimentally; finally,
conclusions are presented in Section 6.

2. Background

2.1. Classification difficulty of instances

In machine learning field, it is unavoidable that some instances are
hard to be classified while some not because of their distribution in
feature space. Some instances which are close to the boundary of
classes may confuse classifiers, and result in misclassification; but
other instances can be correctly classified by most classifiers because
they are far from boundaries or near the center of the class. A good
classifier should be the one which can correctly classify hard instances

and avoid misclassifying easy instances. Formally, the difficulty of each
instance is defined as follows.

Definition 1 (Difficulty of an instance). Given a dataset D¼ f ðχ1;

l1Þ;…; ðχmþn; lmþnÞg; χ iARk; lAf�1;1g, let f ðχÞ be the boundary
between the two classes. For χiAD, its distance from the boundary
is di, then the instance χi's difficulty ξi is defined as

ξip1=di: ð1Þ

Here, class boundary f ðχÞ refers to a surface capable of separ-
ating the two classes. For any positive instance χ i; f ðχ iÞ40; for any
negative instance χ j; f ðχ jÞo0.

See such a case as shown in Fig. 1: instances are distributed in
an R2 space, positives are labeled as “þ” and negatives are labeled
as “�”. The line represents the true boundary of the two classes.

As the positive instance A is much closer to the boundary than
another positive instance B, the classification difficulty of A is
higher than that of B. Hence, if the instance A is classified correctly
by a classifier, we should render the classifier a big reward, and in
contrast, if the instance B is classified correctly by a classifier, we
should grant the classifier a relatively small reward. Meanwhile, if
a classifier misclassifies the instance A, we should exert a small
punishment on it; if a classifier misclassifies the instance B, we
should apply a relatively severe punishment to it. Similarly, the
two negative instances C and D differ from each other greatly in
terms of the distances from the boundary and consequently their
classification difficulties are also different. However, all the exist-
ing measures, including AUC, treat each instance equally in the
process of assessing classifiers.

Example 1. Assume that there is an artificial test set in which
5 positives and 5 negatives are involved. Both c1 and c2 are two-
class classifiers. The scores of the ten instances distributed by c1
and c2 are listed in Table 1. Along with the scores, the difficulty
index ξ of each instance is also provided (it is assigned artificially).
ξ is within the interval of [0,1] where 0 means the lowest level of
difficulty and 1 means the highest level of difficulty.

From Table 1, we note that the scores predicted by c1 and c2 are
the same except the sixth and ninth instances. According to the
definition of the ROC curve, the two classifiers c1 and c2 share the
same ROC curve (shown in Fig. 2). Consequently, they also receive
the same AUC value of 0.76. However, if taking the classification
difficulty into account, we deem that c1 is superior to c2. Take the
sixth instance as an example, its classification difficulty index (ξ) is
0.3. c1 deems that the instance belongs to positive instance with
the probability of 0.45, while c2 deems that the instance belongs to
positive instance with the probability of 0.80. In this case, the
classification difficulty is relatively low, and c2 commits a more

Fig. 1. Instances predicted in R2 space, each “þ” represents a positive and each
“�” does a negative.
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