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This paper is concerned with the stabilization problem for a class of dynamical supply networks, where
the transportation delay, uncertain demand and switching topology are all taken into account. The main
purpose is to design a state feedback control strategy to stabilize such a complex system. Based on the
Lyapunov stability theory, a sufficient condition for the existence of state feedback controller is obtained,
which ensures the exponential stability of supply networks at the stationary states. In addition, our main
results also guarantee a prescribed H., disturbance attenuation level with respect to the uncertain
demand. A simulation study is finally included to show the effectiveness of the proposed stabilization

© 2015 Published by Elsevier B.V.

1. Introduction

Supply network is a complicated dynamical system that is
composed of a set of facilities, connected by transportation links
transforming the raw materials or resources into intermediate and
the products into the end consumers [1,2]. In the recent a few
years, various supply network models have been proposed to
study the supply network system [3-5|. In [6], the authors
proposed a supply network that is governed by balance equations
and equations for the adaptation of production speeds and studied
the stability and dynamics of supply networks. In [7], a stochastic
discrete-time controlled dynamical model was introduced the
model the supply network, and a state-feedback control policy
was obtained to control the material flow of supply network. The
authors in [8] analyzed the propagation and amplification of order
fluctuations (i.e., the bullwhip effect) in supply chain networks
operated with linear and time-invariant inventory management
policies. The supply chain network in that paper is allowed to
include multiple customers (e.g., markets), any network structure,
with or without sharing information.

On the other hand, many complex systems are naturally subject
to time delay due to finite transportation speed [9-11]. For example,
the real-world supply networks are geographically distributed and
the transportation of materials among the suppliers and customers
usually takes much time, which can be modeled as a large-scale
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system with a time-delay term [12]. In [12], the Lyapunov-Razu-
mikhin approach was utilized for the stability analysis of supply
networks with time-delay. However, the time-delay in [12] is
constant, which is unrealistic in practice. Recently, the authors
proposed a new model within the discrete-time singular form in
[13]. In this work, they considered the local capacity control for a
class of production networks of autonomous work systems with
time-varying delays in the capacity changes. Attention is focused on
the design of a controller gain for the local capacity adjustments
that maintains the work-in-progress (WIP) in each work system in
the vicinity of planned levels, and guarantees the asymptotic
stability of the system and reduces the effect of the disturbance
input on the controlled output to a prescribed level. The recent
advances on the stability and stabilization of time-delay supply
network are referred to [14,15] and the references therein.

In practice, the topology structure of supply networks is
changing with the time due to interconnections changing between
the suppliers, which will lead to the instability of supply networks.
However, this issue has been overlooked in the literatures. Very
recently, the authors in [16] proposed a discrete-time Markov
chain model to characterize the unreliable production capacity in
serial supply chain networks. Based on the results in [16], the
authors in [17] introduced a new supply networks model with
stochastic switched topology that is dependent on a continuous
time Markov process and study the stabilization strategies of
supply networks model with stochastic switched topology and
uncertain demand. They showed that the controller gains can be
obtained by solving a bilinear matrix inequality. It should be noted
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that either [16] or [17] assumes that the transition probability is
known precisely in order to simplify the system analysis and
design. However, the likelihood of obtaining such available knowl-
edge is actually questionable, and the cost is considerably expen-
sive for such a complex supply network. Now, the problem is
whether we can stabilize the supply networks with topology
switching without resort to the precise knowledge on the transi-
tion probabilities of Markov process. To the best of the authors’
knowledge, such a challenging work has not been well investi-
gated in the literature. This motivates the present study.

In this paper, we present a new supply network model with
topology switching, time-varying transportation delay and
unknown customer demand. Unlike the aforementioned work,
the statistics information on the transition probability from one
topology to another is completely unknown. By the Laypunov
stability theory and the robust control approach, a sufficient
condition for the existence of the control strategy is obtained
such that the supply network is exponentially stable. In addition,
the prescribed H., disturbance attenuation level for dynamical
supply networks with uncertain demand is also guaranteed. From
the simulation studies, we see that the supply network can be
stabilized by our control strategy.

Notations: The notation used throughout the paper is standard.
We use W, and ||W|| to denote respectively, the transpose, and
the induced norm of any square matrix W. We use W >0 to
denote a positive-definite matrix W and I to denote the identity
matrix with appropriate dimensions. Let R™ denote the m dimen-
sional Euclidean space. L,[0, +oo) is the space of square integrable
infinite sequence. The symbol “%” is used in some matrix expres-
sions to represent the symmetric terms, and they symbol “diag{e}”
stands for a block-diagonal matrix.

2. Problem formulation

Consider a supply network that consists of n suppliers, where
the supplier i delivers materials or resources to other supplier j
(j#1) with a delivery rate c;x;(t), where c; is the connection
weight coefficient of the supplier i and j. Let the stock level of
supplier i at time t be y;(t), and the delivery rate of supplier i at
time t be x;(t). Hence, the supply network can be described by a
directed complex network model with the interconnection of
different suppliers. It is known that the dynamics of a supply
network include two parts: one is the change of inventories y;(t)
and the other is the adaptation of the delivery rate x;(t) of the
suppliers. On the other hand, the delivery among different
suppliers usually suffers from time delay due to the finite trans-
portation speed. Therefore, the inventory y;(t) of each supplier i is
described by the following material balance equation:

YO =x(0— C ) c,»jxj(r—r(t))+d,-(t)> ()

where d;(t) is the demand rate of the end customers for supplier i.
It is assumed that the demand rate d;(t) is unknown but belongs to
L,[0, +00). 7(t) is the time-varying transportation delay between
the supplier i and supplier j, and it is assumed to be upper
bounded, i.e., 0 < 7(t) < 7.

For the delivery rate x;(t) of each supplier i, it is assumed that
the temporal change of the delivery rate is proportional to the
deviation of the actual delivery rate from the expected one, and its
adaptation takes on the average time interval T. Based on this, the
delivery rate x;(t) is described by the following equation:

(0 = 1(F(7,) —x(0) +u(0 @

where T is the adaptation time interval, and u;(t) is the control

strategy to be designed. The nonlinear function F(y;(t)) is the
expected delivery rate, which usually decreases with the increase
of stock level y;(t). According to [3] and [17], the nonlinear function
is taken as follows:
tanh(y;(t)—y.) + tanh

Fty) = 1~ (EMMOHO =y + tanhiy) 5
where y, is the safe stock level.

According to the form of function F(y(t)), we have
dF(y)/dy <1/2 for all yeR™. It implies that the function F(y(t))
satisfies the following Lipschitz condition:

IF(y1(5) —F(y2(0) 1l < %Ilyﬂt) =20l YY1,y €R™ 4)

In practical supply networks, the topology structure is usually
changing with the time due to interconnections changing among the
suppliers. Then the connection term C = [cy], , of the supply net-
work becomes Cp) = c{]’.m ,where p(t) : [0, 00) >M = {1,2, -, m}
. . . . xn . .
is a switching signal, and”fn is the possible topology number.
Corresponding to the switching signal p(t), we have the switching
sequence {Xo; (ig, to), ---(ix, tx), - |ix e M, k= 0,1, ...}, which means
that the i th subsystem is activated when t € [ty, t;,1). It is seen that
the switching frequency f between the time interval [tg,t;) can be
defined as f = (N)/(t;—to), where N is the total number of topology
switchings. Without loss of generality, in this paper the initial time
instant is assumed to be ty = 0.

By considering the time-varying transportation delay, topology
switching and the uncertain demand in a unified framework, the
following supply network model is obtained:

y,-(t>=x,»(t)< ) cé;(f)xj<tr(t)>+df(t)>,
=1 )

Xi(t) = L(F(yi(0)) —xi()) + ui(t)

Let ¥; and X; be the stationary state values of the system (5).
Define y;(t) = y;(t)—¥; and X;(t) = x;(t) — X;. Then by straight forward
computation, we have the following system:

. n
ity =Xi(t)— ( cij“)&j(r—r(t)wdi(r)) :
J=1 (6)
40 = (F (D) =%(0) +uict)
where E(y;(t)) = F(y;(t))— F(¥;(t)). In this paper, we aim to design
the controller u;(t) = Ky;9;(t)+K2ZX;(t) such that the closed-loop

system is exponentially stable.
Denote

() = [710), 20, =, Ju(OT X() = [R1(£), Xa (b), -+, Rn(D)],
W(t) = [d;(t), da (), -+, dn(0)], u(t) = [t1 (£), Uz (8), -+, Un(D)]",

(t t
0o -y —cly
e o
Con = o 0 C.g" ,
i (t) i (t) ) :
g g 0
. 11 1 .
G =diag T Ky =diag{K11, K12, -+, Kqn},

Kz = dlag{1<21 . Kzz, ceey, KZn}-
Then, we have
{ V() = R(t) + CpoyR(t —T(6) + WD),

. . ) . . 7
k()= G(F(y(t))—x(t)) TR () +KoR(D) )

By further manipulation, the following closed-loop supply
network system is obtained:

2(6) = (A+HK)z(t) + Agiz(t — 7(t)) + BE(y()) + Dw(t) 8)
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