
A genetic algorithm for the maximum edge-disjoint paths problem

Chia-Chun Hsu a,b,n, Hsun-Jung Cho a

a Department of Transportation and Logistics Management, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
b Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC, USA

a r t i c l e i n f o

Article history:
Received 7 April 2012
Received in revised form
24 September 2012
Accepted 8 October 2012
Available online 7 August 2014

Keywords:
Edge-disjoint paths
MEDP
Genetic algorithm
Ant colony optimization
Disjoint paths

a b s t r a c t

Optimization problems concerning edge-disjoint paths have attracted considerable attention for
decades. These problems have a lot of applications in the areas of call admission control, real-time
communication, VLSI (Very-large-scale integration) layout and reconfiguration, packing, etc. The
maximum edge-disjoint paths problem (MEDP) seems to lie in the heart of these problems. Given an
undirected graph G and a set of I connection requests, each request consists of a pair of nodes, MEDP is
an NP-hard problemwhich determines the maximum number of accepted requests that can be routed by
mutually edge-disjoint (si,ti) paths. We propose a genetic algorithm (GA) to solve the problem. In
comparison to the multi-start simple greedy algorithm (MSGA) and the ant colony optimization method
(ACO), the proposed GA method performs better in most of the instances in terms of solution quality
and time.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Assigning paths to connection requests is one of the basic
operations in the modern communication networks. Each connec-
tion request is a pair of physically separated nodes that require a
path for information transmission. Given such a set of connection
requests, due to the capacity constraints, one wants to assign paths
to requests in a way that no two paths share an edge in common.
These paths are called the edge disjoint paths (EDPs). The max-
imum edge-disjoint paths problem (MEDP) maximizes the num-
ber of requests that are simultaneously realizable as EDPs. The
problem turns out to be one of the classical combinatorial
problems in the NP-complete category.

MEDP can be formally stated as follows. Let G¼(V,E) be an
undirected and connected graph, where |V|¼n and |E|¼m.
A sequence of edges π¼{e1,e2,…,el}, where eiAE, i¼1,…,l, is called
a path of length l¼ |π|. Two paths are edge-disjoint if they do not
have any edge in common, otherwise we say they interfere. Let
T ¼ fðsi; tiÞji¼ 1;…; I and siatiAVg be a list of connection requests.
Each request (si,ti) in G is a pair of vertices that asks for a path
connecting si and ti. A feasible solution of MEDP is given by a
subset RDT, such that each request in R is assigned a path. The
assigned paths are pairwise edge-disjoint and denoted by S. The
requests in R are called realizable (or accepted) requests. The goal

of the maximum edge-disjoint paths problem is to maximize the
cardinality of R.

Early works on the edge-disjoint paths problem have focused
on the decision problem, which is one of the classical NP-complete
problems [1]. The investigation of MEDP started in the 1990s and
is still ongoing [2–5]. Since that MEDP is an NP-hard problem on
general graphs, many studies devoted to obtaining good approx-
imation algorithms and exploring more tractable classes of graphs
[6]. In the real world, the MEDP has a multitude of applications in
the areas of call admission control [7], real-time communication,
VLSI layout [2], packing [5], etc. In addition, the routing and
wavelength assignment (RWA) problem [8,9] and unsplittable
flow problem (UFP) [3,5,6,10] are direct extensions of MEDP.
Therefore, the importance of MEDP is significant.

For specific classes of graphs, MEDP can be optimally solved in
polynomial time. Such class includes chains, undirected trees,
bipartited stars, and undirected (or bidirected) rings, etc. We refer
to [6] for more details. For arbitrary graphs, approximation
algorithms including simple greedy algorithm, bounded greedy
algorithm and shortest-path-first greedy algorithm, were pro-
posed and their approximation ratios were provided [3,5]. How-
ever, to the best of our knowledge, there is a lack of efficient
algorithms for tackling the MEDP problem on arbitrary graphs.
Greedy algorithms and the ant colony optimization (ACO)
approach are the only existing methods. In this paper, we present
a novel genetic algorithm (GA) for solving the MEDP problem
on arbitrary graphs. The GA is a powerful stochastic search method
which has been successfully applied to tackle optimization

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2012.10.046
0925-2312/& 2014 Elsevier B.V. All rights reserved.

n Corresponding author. Tel.: þ886 921462912.
E-mail addresses: chsu4@ncsu.edu (C.-C. Hsu), hjcho@cc.nctu.edu.tw (H.-J. Cho).

Neurocomputing 148 (2015) 17–22

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2012.10.046
http://dx.doi.org/10.1016/j.neucom.2012.10.046
http://dx.doi.org/10.1016/j.neucom.2012.10.046
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2012.10.046&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2012.10.046&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2012.10.046&domain=pdf
mailto:chsu4@ncsu.edu
mailto:hjcho@cc.nctu.edu.tw
http://dx.doi.org/10.1016/j.neucom.2012.10.046

problems in engineering and science. It has been broadly used on
network optimization problems [11] as well.

The paper is organized as follows. In Section 2, we review one
conventional greedy algorithm and an ACO approach for solving
MEDP problems. In Section 3 we present our algorithm. The
benchmark instances used to test the performance of the GA
approach are introduced in Section 4. The computational results
and some observations are also provided. In Section 5, we make a
conclusion and point out possible directions for future research.

2. Greedy approach and ACO approach for MEDP

A greedy algorithm is a straightforward constructive algorithm
that starts from an empty solution and establishes the solution
step by step with a greedy strategy. It can often provide a solution
in reasonable computational time. The simple greedy algorithm
(SGA) for MEDP shown in Algorithm 1 was proposed in [3].
It starts with an empty set S and R, then iteratively assigns a
shortest path to the connection request according to the given
order. Each time a path is established, all the edges along that path
are removed from the graph. The algorithm halts after I iterations.

Algorithm 1 Simple Greedy Algorithm (SGA)

Input: G¼(V,E) and T ¼ fðsi; tiÞji¼ 1;…; Ig
S’∅, R’∅;
for i¼1 to I

if(path from si to ti in G then

πi’a shortest path from si to ti in G;

S’S[πi;

E’E\{e|eAπi};
R’R[{(si,ti)};

end if
end for
Output: Realizable requests R and edge-disjoint paths S

The main drawback of SGA is that the solution quality highly
depends on the order of the given connection requests. An
intuitive way to improve SGA is applying the multi-start simple
greedy (MSGA) algorithm [12]. MSGA runs SGA for several times,
each time the order of connection requests is randomly permuted.
The algorithm then outputs the best solution among all runs.

Other two improved greedy algorithms including the bounded-
length greedy algorithm and the shortest-path-first greedy algo-
rithm, were proposed by Kleinberg [3] and Kolliopoulos [5],
respectively. The bounded-length greedy algorithm takes an extra
parameter D to denote the threshold of route length. A request is
accepted only if it can be routed on a path of length at most D.
The shortest-path-first greedy algorithm is another modification of
SGA. In each iteration, the shortest path of each of the remaining
requests is obtained. Then the request that has the path with the
shortest length among all the paths is accepted and removed from
the request list. This process repeats until no path can be found for
any of the remaining requests. Both greedy algorithms have
proven to have better performance than SGA [3,5].

However, due to the deterministic decisions that greedy algo-
rithms take during the solution construction procedure, it is
sometimes impossible to find the optimal solution. Fig. 1 shows
an example (illustrated in [12]) which consists of a network with
the connection request T ¼ fðv1; v7Þ; ðv8; v14Þ; ðv15; v21Þg. We can
observe that the optimal solution should contain all three requests
and the paths are shown in boldface. However, since all the greedy
algorithms are based on the shortest path algorithm, none of them

can obtain the optimal solution. No matter which connection
request we start with, its shortest path always includes one edge
that makes it impossible to establish the optimal paths for the
other requests. We can observe that the greedy algorithm cannot
find a solution of size greater than two.

The application of the ant colony optimization (ACO) to solving
the MEDP problem was proposed in [12], which is the only known
metaheuristic method so far. The ACO decomposes MEDP into I
subproblems Pi¼(G,Ti), with iA{1,…,I}. Each subproblem itself is
trying to find a path for the request Ti¼(si,ti)AT by an ant. During
the process of path construction, an ant iteratively moves from one
node to another along an edge, the choice of destination can be
made either deterministically or stochastically. A constructed ant
solution contains I paths which are not necessarily edge-disjoint.
An edge-disjoint solution S can be obtained by iteratively remove
the path that has the most edges in common with other paths,
until the remaining paths are mutually edge-disjoint. A phero-
mone model τi is applied for each subproblem Pi. Each pheromone
model τi consists of a pheromone value τie for each edge eAE.
We refer readers to [12] for the details of the path construction
and pheromone updating procedures.

3. Genetic algorithm for MEDP

A genetic algorithm (GA) mimics the natural evolution pro-
cesses to gradually improve the solution. Several components are
required for solving MEDP by GA: (1) a genetic representation of
the solution domain, (2) a way to create an initial population,
(3) genetic operators to create new offspring at each generation,
and (4) a fitness function for evaluating a solution. The details of
these basic components are introduced in this section.

3.1. Decoding and encoding procedure

Since the MEDP problem considers the routes between I
terminal pairs, we let an individual (or a solution) contain
information of I paths. Each path is encoded by an n-bit string of
real values in the interval [0,1]. Each of these values denotes a
node's “priority” of being selected into a path during the decoding
process. Thereby, an nI-bit string is required to encode an
individual. Let u be a 1�n vector of priority values denoting a
path from s to t. A 1�n binary vector l is the label of the nodes.
Note l is set to 0

,
at the beginning. Decoding of u is a path

construction procedure. The procedure starts at the source node s,
which is also set as the current node w. The candidate nodes for
next move, denoted by C, are the unlabeled nodes adjacent to w.
If C is not empty, the current node w will move to the node which
has the greatest priority value. The label of w is then set to 1 and
the path π grows. Otherwise, the procedure backtracks. This
construction procedure stops when w¼t.

Algorithm 2 Decoding procedure
Input: u is a priority vector with n elements,

source s,

Fig. 1. Instance of the MEDP with T ¼ fðv1 ; v7Þ; ðv8; v14Þ; ðv15; v21Þg. None of the
greedy algorithms can find the optimal solution shown in bold font.

C.-C. Hsu, H.-J. Cho / Neurocomputing 148 (2015) 17–2218

Download English Version:

https://daneshyari.com/en/article/6866024

Download Persian Version:

https://daneshyari.com/article/6866024

Daneshyari.com

https://daneshyari.com/en/article/6866024
https://daneshyari.com/article/6866024
https://daneshyari.com

