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a b s t r a c t

Fireworks algorithm (FA) is a relatively new swarm-based metaheuristic for global optimization. The
algorithm is inspired by the phenomenon of fireworks display and has a promising performance on
a number of benchmark functions. However, in the sense of swarm intelligence, the individuals including
fireworks and sparks are not well-informed by the whole swarm. In this paper we develop an improved
version of the FA by combining with differential evolution (DE) operators: mutation, crossover, and
selection. At each iteration of the algorithm, most of the newly generated solutions are updated under the
guidance of two different vectors that are randomly selected from highly ranked solutions, which increases
the information sharing among the individual solutions to a great extent. Experimental results show that
the DE operators can improve diversity and avoid prematurity effectively, and the hybrid method
outperforms both the FA and the DE on the selected benchmark functions.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The complexity of real-world engineering optimization problems
gives rise to various kinds of metaheuristics that use stochastic
techniques to effectively explore the search space for a global optimum.
In particular, metaheuristics based on swarm intelligence (e.g., [1–7]),
which simulates a population of simple individuals evolving their
solutions by interacting with one another and with the environment,
have shown promising performance on many difficult problems and
have become a very active research area in recent years.

Fireworks algorithm (FA) is a relatively new global optimization
method originally proposed by Tan and Zhu [7]. Inspired by the
phenomenon of fireworks explosion, the algorithm selects in the
search space a certain number of locations, each for exploding a
firework to generate a set of sparks. The fireworks and sparks of
high quality are chosen as the locations for the next generation's
fireworks, and the evolutionary process continues until a desired
optimum is obtained, or the stopping criterion is met. Numerical
experiments on a number of benchmark functions show that the
FA can converge to a global optimumwith a much smaller number
of function evaluations than that of typical particle swarm opti-
mization (PSO) algorithms including [1,8].

In the standard FA, the convergence speed is accelerated by
“good” fireworks that generate more sparks within smaller

explosion areas, and the search diversity is improved by “bad”
fireworks that generate fewer sparks within larger explosion areas.
However, to some extent, such a diversification mechanism is not
very flexible and, in particular, it does not utilize more information
about other quality solutions in the swarm. That is, in the sense of
swarm intelligence, the individuals (fireworks and sparks) are not
well-informed by the whole swarm.

Inspired by this observation, we develop an improved fire-
works optimization method by combining with differential evolu-
tion (DE) operators: mutation, crossover, and selection [9]. At each
iteration of the algorithm, these operators are applied to guide the
generation of new solutions, which improves the diversity of the
swarm and avoids being trapped in local optima too early.
Experiments on selected benchmark functions show that the
well-informed fireworks and sparks can improve the performance
of the FA to a great extent.

The remainder of this paper is structured as follows: Section 2
briefly describes the FA algorithm and the DE algorithm, Section 3
proposes the framework of our hybrid FA method, Section 4 presents
the computational experiments, Section 5 analyzes and discusses the
experimental results, and Section 6 makes the conclusion.

2. Backgrounds

2.1. Fireworks algorithm

The FA proposed in [7] is a global optimization algorithm
simulating the explosion process of fireworks, where an explosion
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can be viewed as a search in the local space around the location of
a firework. In the original FA, the number of sparks and the
amplitude of explosion for each firework xi are respectively
defined as follows:

si ¼m � f max� f ðxiÞþϵ
∑p

j ¼ 1ðf max� f ðxjÞÞþϵ
ð1Þ

Ai ¼ Â � f ðxiÞ� f minþϵ
∑p

j ¼ 1ðf ðxjÞ� f minÞþϵ
ð2Þ

where m is a parameter for controlling the total number of sparks
generated by the fireworks, Â is the maximum explosion ampli-
tude, p is the size of the swarm, fmax and fmin are respectively the
maximum and minimum objective values among the p fireworks,
and ϵ is a small constant to avoid zero-division-error.

To avoid overwhelming effects of splendid fireworks, lower and
upper bounds are defined for si such that

si ¼
smin if siosmin

smax else if si4smax

si else

8><
>: ð3Þ

For a D-dimensional problem, the location of each spark
xj generated by xi can be obtained by randomly setting z direc-
tions ðzoDÞ, and for each dimension k setting the component xjk

based on xi
k ð1r jrsi;1rkrzÞ. There are two ways for setting xj

k.
For most sparks, a displacement hk ¼ Ai � randð�1;1Þ is added
to xi

k,i.e.,

xkj ¼ xki þAi � randð�1;1Þ ð4Þ
To keep the diversity, for a few specific sparks, an explosion

coefficient based on Gaussian distribution is applied to xi
k such that

xkj ¼ xki � Gaussianð1;1Þ ð5Þ
In both the ways, if the new location falls out of the search

space, it is mapped to the search space as follows:

xkj ¼ xkminþjxkj j%ðxkmax�xkminÞ ð6Þ
where % denotes the modulo operator for floating-point numbers,
as defined in most computer languages.

At each iteration of the FA, among all the current sparks and
fireworks, the best location is always selected as a firework of the
next generation. After that, p�1 fireworks are selected with
probabilities proportional to their distance to other locations.
The general framework of the FA is described in Algorithm 1.

In the FA, sparks suffer the power of explosion and thus move
along z directions simultaneously, which makes the algorithm
converge very fast. Two types of spark generation methods and
the specific selection process for locations also endue the FA with
the capability of avoiding premature convergence. The advantages
of the FA over the standard PSO and improved PSO algorithms
have also been demonstrated by experiments on a number of
benchmark functions [7].

Algorithm 1. The standard fireworks algorithm.

1 set the algorithm parameters p, smin, smax, Â, and m̂;
2 randomly initialize a swarm S of p fireworks;
3 while (stop criteria is not met) do
4 let R be the empty set of sparks;
5 foreach firework xiAS do
6 calculate si for xi according to Eqs. (1) and (3);
7 calculate Ai for xi according to Eq. (2);
8 for j¼1 to si do
9 yield a spark xj;
10 let z¼ roundðD � randð0;1ÞÞ;
11 for k¼1 to z do set xjk according to Eqs. (4) and (6);

12 R¼ R [ fxjg;
13 randomly select a set P of m̂ fireworks from S;
14 foreach firework xiAP do
15 yield a spark xj;
16 let z¼ roundðD � randð0;1ÞÞ;
17 for k¼1 to z do set xjk according to Eqs. (5) and (6);
18 R¼ R [ fxjg;
19 R¼ R [ S;
20 let gbest be the best location among R, and set S¼ fgbestg;
21 Add to S other p�1 locations selected from R based on

distance probabilities;
22 end

2.2. Difference evolution

Introduced by Storn and Price [9], DE is an efficient evolu-
tionary algorithm that simultaneously evolves a population of
solution vectors. But unlike the genetic algorithm (GA) [10], DE
uses floating-point vectors and does not employ some probability
density functions for vector reproduction. Specifically, DE gener-
ates a mutant vector vi for each vector xi in the population by
adding the weighted difference between two randomly selected
vectors to a third one:

vi ¼ xr1 þγðxr2 �xr3 Þ ð7Þ
where random indexes r1; r2; r3Af1;2;…; pg and coefficient γ40.

A trial vector ui is then generated by using the crossover
operator which mixes the components of the mutant vector and
the original one, where each jth component of ui is determined as
follows:

uj
i ¼

vji if randð0;1Þocr or j¼ rðiÞ
xj
i else

8<
: ð8Þ

where cr is the crossover probability ranged in ð0;1Þ and r(i) is a
random integer within ð0; p� for each i.

In the last step of each iteration, the selection operator chooses
the better one for the next generation by comparing ui with xi:

xi ¼
ui if f ðuiÞr f ðxiÞ
xi else

(
ð9Þ

By computing the difference between two individuals ran-
domly chosen from the population, the DE is actually estimating
the gradient in that zone (rather than in a point). The mutation
operator makes the DE capable of self-adapting both the step sizes
and the step direction, and local criterion of the selection operator
is also efficient and fast [11]. Generally, these features make the DE
converge faster and with more certainty than many other heuristic
methods.

3. The hybrid fireworks optimization method

For a D-dimensional optimization, the fitness value of a solu-
tion is determined by values of all components, and a solution that
has discovered the region corresponding to the global optimum in
some dimensions may have a low fitness value because of the poor
quality in the other dimensions [12]. Thus, many population-based
optimization methods, including DE, comprehensive learning PSO
[12] and fully informed PSO [13], enable the individuals to make
use of the beneficial information in the swarm more effectively to
generate better quality solutions.

In the standard FA, after obtaining the set R of all fireworks and
sparks, the locations for new fireworks are selected based on
distance to other locations in R so as to keep diversity of the
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