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a b s t r a c t

This paper deals with the synchronization problem for delayed static neural networks with hybrid
couplings. When the static neural networks are affected by hybrid couplings, it is hard to deal with a
large number of highly interconnected dynamical units in such a complex system. In order to solve this
complicated problem, a new method is proposed to deal with the Kronecker product, and to make the
synchronization problem to be easily analyzed. Further, based on the obtained result, by using the
augmented Lyapunov–Krasovskii functional (LKF) method, multitude Kronecker product terms can be
handled, which can introduce more relaxed conditions by employing the new type of augmented
matrices with the Kronecker product operation. Finally, a numerical example is provided to demonstrate
the effectiveness of the proposed synchronization scheme.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the past decades, complex networks have been gaining
increasing research attention due to their potential applications to
many real-world systems in various fields of science and engineer-
ing [1,2]. One of the most significant and interesting phenomena in
complex networks is the synchronization of all dynamical nodes.
Many real world problems are closely related to the network
synchronization, for example the synchronous phenomena on the
internet, synchronous transfer of digital or analog signals in the
communication networks, and so on [3,4]. Thus, synchronization in
complex networks has drawn significant research interest in recent
years; see, e.g., [3–9] and the references therein.

As a special kind of complex networks, coupled neural networks
provide a large class of models that can be used to describe coupled
systems with continuous time and state values, as well as discrete
spatial states in many research fields [10]. The dynamical behavior of
coupled networks is governed by the following two mechanisms: the
intrinsic nonlinear dynamics of the neural network at each node and
the diffusion due to the spatial coupling among nodes. They have been

investigated as theoretical models of spatio-temporal phenomena of
complex networks [11]. In the past few years, the synchronization
problems in coupled dynamic networks have beenwidely investigated
due to its applications in secure communication and signal generators
design [12–18]. For example, [12] presented criteria for local and global
synchronization of linearly coupled dynamical systems. In [13], the
authors investigated the synchronization of coupled neural networks
with time-varying coupling configuration. It is well-known that time
delays occur commonly in neural networks because of the network
traffic congestion as well as the finite speed of signal transmission over
the links. So the synchronization study of coupled neural networks
with time delays is quite important. There are also many papers
dealing with this issue [14–18]. For example, in [14], by introducing a
novel augmented LKF method, the authors obtained sufficient condi-
tions in terms of LMI for global synchronization of hybrid coupling
neural networks with interval delay. In [16], the global stability of
synchronizationmanifold is investigated for an array of coupled neural
networks with random coupling strengths and time-varying delays.

As was shown in [19], according to whether the neuron states
or local field states of the neurons are chosen as basic variables to
describe the evolution rule, neural networks can be classified as
local field neural networks (LFNN) and static neural networks
(SNN). However, most of the existing results are concerned with
the synchronization problems of coupled LFNN, there is no result
on the coupled SNN yet. Therefore, the synchronization problem
for such systems still has much room for further research.
Motivated by the above discussions, we investigate the synchroniza-
tion problem of a general SNN with hybrid couplings and time
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delays. By constructing a novel Lyapunov functional and introducing
several new lemmas, some sufficient conditions are obtained to
analyze the synchronization problem for coupled static neural net-
works. The model is novel, and the method has not been reported in
the existing results for solving synchronization problem of coupled
neural networks or complex networks. Finally, a numerical example
is provided to illustrate the effectiveness of our methods.

Notations: Rn is the n-dimensional Euclidean space; Rm�n

denotes the set of m�n real matrices. XZ0 (X40) means that
X is a positive semidefinite (positive definite). In represents the n-
dimensional identity matrix. diagð�Þ denotes a block-diagonal
matrix. ½X

n

Y
Z� stands for ½ X

YT
Y
Z�. Matrix dimensions, if not explicitly

stated, are assumed to be compatible for algebraic operations.

2. Problem formulation and preliminaries

In this section, the problem of global asymptotic stability of
neural networks with time delay is proposed. Consider the
following coupled neural networks with time delays described by

_xiðtÞ ¼ �CxiðtÞþ f ðAxiðtÞÞþ f ðBxiðt�τÞÞ

þ ∑
N

j ¼ 1
Gð1Þ
ij D1xjðtÞþ ∑

N

j ¼ 1
Gð2Þ
ij D2xjðt�τÞ; i¼ 1;2;…;N ð1Þ

where xiðtÞ ¼ ðxi1ðtÞ; xi2ðtÞ;…; xinðtÞÞT ARn is the neuron state vector
of the ith network at time t. f ðxiðtÞÞ ¼ ðf 1ðxi1ðtÞÞ; f 2ðxi2ðtÞÞ;…;

f nðxinðtÞÞÞT is the neuron activation function, τ40 denotes the
transmission delay. C ¼ diagðc1; c2;…; cnÞ40 is the state feedback
coefficient matrix, A , BARn�n represent the connection weight

matrices, GðqÞ ¼ ðGðqÞ
ij ÞN�N ; ðq¼ 1;2Þ represent the coupling connec-

tions; D1;D2ARn�n represent the inner coupling matrix and the
discrete-delay inner coupling matrix.

For simplicity, let

xðtÞ ¼ ðxT1ðtÞ; xT2ðtÞ;…; xTNðtÞÞT ;

FðxðtÞÞ ¼ ðf T ðx1ðtÞÞ; f T ðx2ðtÞÞ;…; f T ðxNðtÞÞÞT :
Combining with the sign � of Kronecker product, model (1)

can be rewritten as

_xðtÞ ¼ �ðIN � CÞxðtÞþFððIN � AÞxðtÞÞþFððIN � BÞxðt�τÞÞ
þðGð1Þ � D1ÞxðtÞþðGð2Þ � D2Þxðt�τÞ ð2Þ

Throughout this paper, the following assumptions are needed.

Assumption 1. The outer-coupling configuration matrices of the
complex networks satisfy

GðqÞ
ij ¼ GðqÞ

ji Z0; ia j; q¼ 1;2;

GðqÞ
ii ¼ � ∑

N

j ¼ 1;ja i
GðqÞ
ij ; i; j¼ 1;2;…;N

8>><
>>:
Assumption 2 (Liu et al. [20]). For any x1; x2AR and any constants
σ�
r ;σþ

r , the active function satisfies

σ�
r r f rðx1Þ� f rðx2Þ

x1�x2
rσþ

r ; r¼ 1;2;…;n

We denote

Δ1 ¼ diagðσþ
1 σ

�
1 ;…;σþ

n σ
�
n Þ;

Δ2 ¼ diag
σþ
1 þσ�

1

2
;…;

σþ
n þσ�

n

2

� �
:

Next, we give some useful definition and lemmas.

Definition 1. Model (1) is said to be globally synchronized for any
initial conditions Π i0ðsÞ ði¼ 1;2;…;NÞ, if the following holds:

lim
t-þ1

JxiðtÞ�xjðtÞJ ¼ 0; 8 i; j¼ 1;2;…;N;

in which J � J stands for the Euclidean norm.

Lemma 1 (Gu et al. [21]). For any constant matrix RARn�n, RT ¼
R40, scalar ρ40 and vector function ϖ : ½0;ρ�-Rn, one has:

ρ
Z ρ

0
ϖT ðsÞRϖðsÞ dsZ

Z ρ

0
ϖðsÞ ds

� �T

R

Z ρ

0
ϖðsÞ ds

� �

Lemma 2. According to [20] and Assumption 2, for any diagonal
matrix J40; L40 and constant matrix M with appropriate dimen-
sions, it follows that

MxiðtÞ�MxjðtÞ
f ðMxiðtÞÞ� f ðMxjðtÞÞ

" #T � JΔ1 JΔ2

n � J

" #
MxiðtÞ�MxjðtÞ

f ðMxiðtÞÞ� f ðMxjðtÞÞ

" #

þ
Mxiðt�τÞ�Mxjðt�τÞ

f ðMxiðt�τÞÞ� f ðMxjðt�τÞÞ

" #T �LΔ1 LΔ2

n �L

" #

�
Mxiðt�τÞ�Mxjðt�τÞ

f ðMxiðt�τÞÞ� f ðMxjðt�τÞÞ

" #
Z0 ð3Þ

It is equivalent to the following equation:

xiðtÞ�xjðtÞ
f ðMxiðtÞÞ� f ðMxjðtÞÞ

" #T �MTJΔ1M MTJΔ2

n � J

" #

xiðtÞ�xjðtÞ
f ðMxiðtÞÞ� f ðMxjðtÞÞ

" #

þ
xiðt�τÞ�xjðt�τÞ

f ðMxiðt�τÞÞ� f ðMxjðt�τÞÞ

" #T �MTLΔ1M MTLΔ2

n �L

" #

�
xiðt�τÞ�xjðt�τÞ

f ðMxiðt�τÞÞ� f ðMxjðt�τÞÞ

" #
Z0 ð4Þ

Lemma 3. Let � denote the notation of Kronecker product. Then, the
following relationships hold:

(1) ðαAÞ � B¼ A � ðαBÞ
(2) ðAþBÞ � C ¼ A � CþB � C
(3) ðA � BÞðC � DÞ ¼ ðACÞ � ðBDÞ

Lemma 4 (Liu et al. [20]). Let e¼ ð1;1;…;1ÞT , EN ¼ eeT , and
U ¼NIN�EN, PARn�n, x¼ ðxT1; xT2;…; xTNÞT , and y¼ ðyT1; yT2 ;…; yTNÞT
with xk; ykARn; ðk¼ 1;2;…;NÞ, then

xT ðU � PÞy¼ ∑
N

1r io jrN
ðxi�xjÞTPðyi�yjÞ

Lemma 5 (Zhang et al. [14]). For PθνARn�n ð1rθr l;1rνr lÞ,
xðωÞ ¼ ððxðωÞ

1 ÞT ; ðxðωÞ
2 ÞT ;…; ðxðωÞ

N ÞT ÞT , and yðωÞ ¼ ððyðωÞ
1 ÞT ; ðyðωÞ

2 ÞT ;…; ðyðωÞ
N Þ

T ÞT with xðωÞ
k , yðωÞ

k ARn (k¼ 1;2;…;N, ω¼ 1;2;…; l), e¼ ð1;1;…;1T ,
EN ¼ eeT , and U ¼NIN�EN, the following function can be obtained:

½ðxð1ÞÞT ;…; ðxðlÞÞT �
U � P11 … U � P1l

⋮ ⋱ ⋮
U � Pl1 … U � Pll

2
64

3
75

yð1Þ

⋮
yðlÞ

2
64

3
75

¼ ∑
N

1r io jrN

xð1Þi �xð1Þj

⋮
xðlÞi �xðlÞj

2
664

3
775
T

P11 … P1l

⋮ ⋱ ⋮
Pl1 … Pll

2
64

3
75

yð1Þi �yð1Þj

⋮
yðlÞi �yðlÞj

2
664

3
775
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