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a b s t r a c t

An efficient two-level model identification method aiming at maximising a model's generalisation
capability is proposed for a large class of linear-in-the-parameters models from the observational data.
A new elastic net orthogonal forward regression (ENOFR) algorithm is employed at the lower level to
carry out simultaneous model selection and elastic net parameter estimation. The two regularisation
parameters in the elastic net are optimised using a particle swarm optimisation (PSO) algorithm at the
upper level by minimising the leave one out (LOO) mean square error (LOOMSE). There are two elements
of original contributions. Firstly an elastic net cost function is defined and applied based on orthogonal
decomposition, which facilitates the automatic model structure selection process with no need of using a
predetermined error tolerance to terminate the forward selection process. Secondly it is shown that the
LOOMSE based on the resultant ENOFR models can be analytically computed without actually splitting
the data set, and the associate computation cost is small due to the ENOFR procedure. Consequently a
fully automated procedure is achieved without resort to any other validation data set for iterative model
evaluation. Illustrative examples are included to demonstrate the effectiveness of the new approaches.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

A large class of nonlinear models including some types of
neural networks can be classified as linear models which include
statistically linear or linear-in-the-parameters models [1,2]. These
models have provable learning and convergence conditions and
are well suited to be used for adaptive learning. They are amenable
to parallel implementations, and have clear applications in many
engineering applications [3–5]. A basic principle in practical non-
linear data modelling is the parsimonious principle that ensures
the smallest possible model for the explanation of the observa-
tional data. For linear models, the forward orthogonal least
squares (OLS) algorithm efficiently constructs parsimonious mod-
els [6,7], and has been a popular tool in associative neural
networks such as fuzzy/neurofuzzy systems [8,9] and wavelet
neural networks [10,11]. The algorithm has also been utilised in
a wide range of engineering applications, e.g. aircraft gas turbine
modelling [12], fuzzy control of multi-input multi-output (MIMO)
nonlinear systems [13], power system control [14] and fault
detection [15].

The main purpose of model construction is to produce good
generalisation (capability to approximate system output for new
input data that are not used in estimation), through two important

aspects in system identification, i.e. choosing parsimonious model
structure and deriving robust model parameter estimates for a
smooth prediction surface (e.g. parameter control via regularisa-
tion). Fundamental to the evaluation of model generalisation
capability is the concept of cross-validation (CV) [16], which can
be used either in parameter estimation (e.g. tuning regularisation
parameter [17,18], forming new parameter estimates [19]), or to
derive model selection criteria based on information theoretic
principles [20], which regularises model structure in order to
produce parsimonious models, since a parsimonious model is
favoured by these criteria. The regularisation assisted OLS (ROLS)
approaches have been proposed based on minimising the leave
one out criteria for regression, classification and probability
density estimation [21]. In particular each radial basis function
(RBF) unit has a tunable centre vector as well as an adjustable
diagonal covariance matrix [21]. Specifically, at each forward
regression stage of the model construction procedure one RBF
unit's centre vector and diagonal covariance matrix are optimised
using a particle swarm (PSO) algorithm. The PSO [22,23] consti-
tutes a population based stochastic optimisation technique, which
was inspired by the social behaviour of bird flocks or fish schools.
The algorithm commences with random initialisation of a swarm
of individuals, referred to as particles, within the specific pro-
blem's search space. It then endeavours to find a globally optimum
solution by gradually adjusting the trajectory of each particle
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towards its own best location and towards the best position of the
entire swarm at each optimisation step. The PSO method is
popular owing to its simplicity in implementation, ability to
rapidly converge to a “reasonably good” solution and to “steer
clear” of local minima. It has been successfully applied to a wide
range of optimisation problems [24–28].

Regularisation methods are developed to carry out parameter
estimation and model structure selection simultaneously [29,30].
It has been shown [31,32] that the parameter regularisation is
equivalent to a maximised a posterior probability (MAP) estimate
of parameters from Bayesian viewpoint by adopting a Gaussian
prior for parameters. The regularisation [17,18] uses a penalty
function on l2 norms of the parameters. From the powerful
Bayesian learning view point, a regularisation parameter is equiva-
lent to the ratio of the related hyperparameter to the noise
parameter, lending to an iterative evidence procedure for solving
the optimal regularisation parameters [29,32]

Alternatively the model sparsity can be achieved by minimising
the l1 norm of the parameters. The l1 norm minimisation is
fundamental to the basis pursuit or least absolute shrinkage and
selection operator (LASSO) [33,34]. The least angle regression
(LAR) procedure [35] is developed for solving the problem effi-
ciently. The Bayesian interpretation for LASSO is simply by adopt-
ing an Laplacian prior for parameters. The advantage of LASSO is
that it can achieve much sparser models by forcing more para-
meters to zero, than models derived from the minimisation of the
lp norm, as most lp norms will produce small, but nonzero, values.
Unfortunately introducing nondifferentiable l1 norm in the cost
function brings difficulties of model parameter estimation and
finding an appropriate l1 regulariser.

Another disadvantage of using l1 optimisation is that a group of
correlated terms cannot be selected together, which is not desir-
able for the sake of interpretability of the model in some applica-
tions. On the other hand, the use of l2 will improve model
generalisation, but cannot be used for model selection by itself.
Combining a locally regularised orthogonal least squares (LROLS)
model selection [36] with D-optimality experimental design
enhances model robustness [31].

Recently a promising concept of the elastic net (EN) has been
proposed by minimising the l1 and l2 norms of the parameters
together [30]. The EN keeps the model sparsity of LASSO, while
strongly correlated terms tend to be in or out of the model
together. It is shown that the elastic net problem can be trans-
formed into an equivalent LASSO problem on an augmented data,
based on which the LAR procedure is applicable, referred to as
LARS-EN [30]. Note that because there are two regularisation
parameters in the elastic net, the cross validation has to be
performed over a two-dimensional space. The tenfold cross
validation was used in the choosing two regularisation parameters
by searching over a grid of l2 norm regularisation parameter
values. Then for each setting of the l2 norm regularisation para-
meter, the algorithm LARS-EN produces the entire solution path of
the elastic net, which is used to select l1 norm regularisation
parameter by tenfold CV. Clearly this may not yield the optimal
parameters if the grid search is set at a coarse level, but increasing
the grid search at a very fine level would inevitably increase the
computational cost. It would be desirable that the two regularisa-
tion parameters can be optimised simultaneously based on cross
validation as well as in an efficient manner.

In this paper we propose an efficient model identification
method aiming at maximising a model's generalisation capability.
The paper contains two elements of novel contribution. Firstly an
elastic net cost function is defined and applied based on orthogo-
nal decomposition, which facilitates the automatic model struc-
ture selection process with no need of using a predetermined error
tolerance to terminate the forward selection process. Secondly an

original derivation of analytical evaluation of LOOMSE is presented
based on the resultant ENOFR models without actually splitting
the data set. Consequently a fully automated procedure is achieved
without resort to any other validation data set for iterative model
evaluation. The algorithm has a two level structure. At the upper
level, the two regularisation parameters in the elastic net are
optimised using PSO by minimising the LOOMSE. At the lower
level are the simultaneous model selection and elastic net para-
meter estimation. Illustrative examples are included to demon-
strate the effectiveness of the new approaches.

2. Preliminaries

Consider the general nonlinear system represented by the
nonlinear model [37]:

yðkÞ ¼ f ðxðkÞÞþeðkÞ; ð1Þ

where xðkÞARm denotes the system input vector and y(k) is the
system output variable, respectively. e(k) is the systemwhite noise
and f ð�Þ is the unknown system mapping. The system model (1) is
to be identified from an observation data set DN ¼ fxðkÞ; yðkÞgNk ¼ 1
using some suitable functional which can approximate f ð�Þ with
arbitrary accuracy. One class of such functionals is the kernel
regression model of the form:

yðkÞ ¼ ŷðkÞþeðkÞ ¼ ∑
nM

i ¼ 1
θiϕiðxðkÞÞþeðkÞ; ð2Þ

where ŷðkÞ denotes the model output, θi are the model weights,
ϕiðxðkÞÞ are the regressors, and nM is the total number of candidate
regressors or model terms.

By letting ϕi ¼ ½ϕiðxð1ÞÞ⋯ϕiðxðNÞÞ�T , for 1r irnM , and defining

y¼
yð1Þ
⋮

yðNÞ

2
64

3
75; Φ¼ ½ϕ1⋯ϕnM

�;

θ¼
θ1

⋮
θnM

2
64

3
75; e¼

eð1Þ
⋮

eðNÞ

2
64

3
75; ð3Þ

the regression model (2) can be written in the matrix form

y¼Φθþe: ð4Þ

Let an orthogonal decomposition of the matrix Φ be

Φ¼WA; ð5Þ

where

A¼

1 a1;2 ⋯ a1;nM
0 1 ⋱ ⋮
⋮ ⋱ ⋱ anM �1;nM

0 ⋯ 0 1

2
6664

3
7775 ð6Þ

and

W¼ ½w1…wnM � ð7Þ

with columns satisfying wT
i wj ¼ 0, if ia j. The regression model (4)

can alternatively be expressed as

y¼Wgþe; ð8Þ

where the orthogonal weight vector g¼ ½g1⋯gnM �T satisfy the
triangular system Aθ¼ g, which can be used to determine model
parameters θ, given A and g.
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