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a b s t r a c t

This paper investigates the exponential synchronization for a class of delayed neural networks with
Markovian jumping parameters and time varying delays. The considered transition probabilities are
assumed to be partially unknown. In addition, the sampling period is assumed to be time-varying that
switches between two different values in a random way with given probability. Several delay-dependent
synchronization criteria have been derived to guarantee the exponential stability of the error systems
and the master systems are stochastically synchronized with the slave systems. By introducing an
improved Lyapunov–Krasovskii functional (LKF) including new triple integral terms, free-weighting
matrices, partly unknown transition probabilities and combining both the convex combination technique
and reciprocal convex technique, a delay-dependent exponential stability criteria is obtained in terms of
linear matrix inequalities (LMIs). The information about the lower bound of the discrete time-varying
delay is fully used in the LKF. Furthermore, the desired sampled-data synchronization controllers can be
solved in terms of the solution to LMIs. Finally, numerical examples are provided to demonstrate the
feasibility of the proposed estimation schemes from its gain matrices.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

During the past few years, there have been increasing research
interests in analyzing the dynamic behaviors of neural networks due
to their extensive applications such as combinatorial optimization,
adaptive control, signal processing, pattern recognition, image
processing and association [1–3]. In electronic implementation of
neural networks, time delays are frequently predictable in the
process of information storage and transmission. It is well believed
that the inherent time delays may cause oscillation and instability in
many dynamical networks. In general, the time delays can be usually
categorized as constant delays, time-varying delays, and distributed
delays. Recently, LMI techniques have been successfully used to deal
with various stability problems for neural networks with time delays
(e.g., [4–6]). Therefore, the stability analysis of delayed neural
networks had increased research interests in recent years.

As it is well known, Markov jump system is a special class of hybrid
systems, which is specified by two components, the first component
refers to the mode, which is described by a continuous-time finite-
state Markovian process and second one refers to the state which is

represented by a system of differential equations. The applications of
the Markovian jump systems can be found in network control
systems, manufacturing systems, economic systems, modeling pro-
duction system, communication systems and so on. Stability analysis
results on the Markovian jump neural networks can be found in
[7–12]. Although, previous literatures usually assumed that the
information on transition probabilities in the Markovian switching
process is completely known. Some extended results are concerned
with the uncertain transition probabilities [13]. But, practically in most
cases transition probabilities on Markovian jump systems and net-
works are not exactly known. The DC motor in position control
servomechanisms [14] for example, the changes of load or the inertia
in different servomechanisms are vague and random, so it is hard to
obtain all the elements in the expected transition probability matrix.
The same problem may arise in other practical systems such as the
networked control systems [15]. In these cases, the results developed
for Markovian jump systems with completely known transition
probabilities are not applicable. Therefore, it is significant and neces-
sary to study more general jump systems with partially unknown
transition probabilities. In [16–18], Zhang et al. investigated the
problems of stability, stabilization and H1 filtering for a class of
Markovian jump linear systems with partly unknown transition
probabilities. In addition, the problems of stability and synchronization
for a class of Markovian jump neural networks with partly unknown
transition probabilities are discussed in [19]. Recently, stabilization of
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Markovian jump systems partially unknown transition probabilities
via fuzzy control and L2�L1 for neutral Markovian switching
systems with partially unknown transition probabilities are discussed
in [20,21].

Really, chaotic neural networks as special complex networks can
exhibit some complicated dynamics and are discussed in [22].
A typical characteristic of chaotic systems is their sensitive depen-
dence on initial conditions. It means that it is generally difficult to
achieve synchronization between chaotic systems. A large number
of results have been presented on time delayed chaotic neural
networks that have been widely used in various areas, such as
secret communication, cryptography, pattern recognition, associa-
tive memory and combinatorial optimization. In [23], the authors
have studied stabilization and synchronization control of Markovian
jumping neural networks with mode-dependent mixed time delays
subject to quantization and packet dropout. The adaptive synchro-
nization for stochastic neural networks of neutral-type with mixed
time-delays has been discussed in [24].

On the other hand, sampled-data control system has been
studied extensively over the past few decades. In sampled data
control method, the control signal is kept constant during the
sampling period and is allowed to change only at the sampling
instant. Also, in sampled data control systems, choosing proper
sampling interval is more important for designing suitable control-
lers. In the past few decades, many of the researchers have discussed
problems with constant sampling. Subsequently, researchers have
also focused on time-varying sampling due to its applications in
several practical systems. Hu et al. [25] studied the stability problem
of digital feedback control systems with time-varying sampling
periods. The authors in [26] have discussed the Integral control
with variable sampling. Stochastic stability analysis for networ-
ked control systems by using time-varying sampling periods has
been reported in [27]. Furthermore, the sampled-data systems have
attracted great attention and the essential results have been
proposed in [28–31]. The problem of exponential synchronization
for neural networks with mixed delays using sampled-data feedback
control has been discussed in [32]. In [33], the robust sampled-data
H1 control problem has been investigated for active vehicle
suspension systems. The authors in [34] dealt with the problem of
sampled-data state estimation for delayed neural networks with
Markovian jumping parameters. After that, some of the authors have
discussed the sampled-data synchronization of various neural net-
works with time delays, see for example [35,36]. Obviously, it is
meaningful and very interesting to study the problem of master–
slave synchronization for neural networks with discrete delays using
sampled-data control method for achieving less conservative delay-
dependent conditions with a less number of decision variables to
ensure that the master systems synchronize with the slave systems.
To the best of authors0 knowledge, no related results have been
established for the exponential synchronization of Markovian jump
neural networks with discrete delays and partially unknown transi-
tion probabilities using stochastic sampling by incorporating with
a convex combination technique.

Inspired by the above works, in this paper, we derive the
criteria to exponential synchronization for Markovian jumping
neural networks with unknown transition probabilities and
stochastic sampled-data control using the Lyapunov stability
theory. Also, the control gain matrices of the feedback controllers
have been derived in terms of LMIs which can easily solved by any
one of the LMI solvers [50]. With time dependent Lyapunov
functional, convex combination technique and reciprocal convex
technique, new stability criteria have been derived for the error
dynamical systems by using sampled-data control with stochastic
sampling. The main contribution of this paper is that the proposed
results ensure the mean square exponential stability of the error
system by using the newly designed delayed feedback controller in

the slave system with unknown transition probabilities and in the
system parameters. Two numerical simulations are finally given to
show the effectiveness of the theoretical results.

Notations: Throughout this paper, Rn and Rn�n denote the
n-dimensional Euclidean space and the set of all n�n real matrices
respectively. I denotes the identity matrix with compatible dimen-
sions. diagð⋯Þ denotes a block diagonal matrix. The superscript T
denotes the transposition and the notation XZY (similarly, X4Y),
where X and Y are symmetric matrices, means that X�Y is positive
semi-definite (similarly, positive definite). Let ðΩ;F;PÞ be a complete
probability space with a natural filtration fFtgtZ0. Also, let d40 and
Cð½�d;0�;RnÞ denote the family of continuously differentiable func-
tions ϕ from ½�d;0� to Rn with the uniform norm JφJ ¼
max�dr θr0jφðθÞj. Denote by C2F0

ð½�d;0�;RnÞ the family of bounded
F0�measurable, Cð½�d;0�;RnÞ�valued stochastic variables ξ¼ fξðθÞ :
�drθr0g such that

R 0
�d EjjξðθÞj2 dso1. Prfαg means the occur-

rence probability of the event α. Efxg and Efxjyg, respectively, mean
the expectation of the stochastic variable x and the expectation of the
stochastic variable x conditional on the stochastic variable y. 0m�n

denotes the m�n zero matrix. Πði; jÞ denotes the ith row, jth column
element (or block matrix) of matrix Π. The notation n always denotes
the symmetric block in one symmetric matrix.

2. Problem formulation and preliminaries

Consider the delayed neural networks with Markovian jumping
parameters described by

_xðtÞ ¼ �CðrðtÞÞxðtÞþAðrðtÞÞgðxðtÞÞþBðrðtÞÞgðxðt�dðtÞÞÞþ JðtÞ; ð1Þ
where xðtÞ ¼ ½x1ðtÞ; x2ðtÞ;…; xnðtÞ�T ARn is neuron state vector. The
diagonal matrix CðrðtÞÞ ¼ diagðc1ðrðtÞÞ; c2ðrðtÞÞ;…; cnðrðtÞÞÞ has posi-
tive entries ciðrðtÞÞ40 ði¼ 1;2;…;nÞ. The matrices AðrðtÞÞ ¼ ðaij
ðrðtÞÞÞn�n and BðrðtÞÞ ¼ ðbijðrðtÞÞÞn�n are the interconnection matrices
representing the weight coefficients of the neurons. J(t) is
a constant input vector. gðxðtÞÞ ¼ ½g1ðx1ðtÞÞ; g2ðx2ðtÞÞ;…; gnðxnðtÞÞ�T
ARn denotes the neuron activation function. Time varying delay
satisfies d1rdðtÞrd2; _dðtÞrμ, where d24d140, μ are real con-
stants. Let frðtÞ; tZ0g be a right-continuous Markov chain on a
complete probability space ðΩ;F ;PÞ taking values in a finite state
space S ¼ f1;2;…;Ng with generator Γ ¼ ðqijÞN�N given by

PfrðtþΔtÞ ¼ jjrðtÞ ¼ ig ¼
qijΔtþoðΔtÞ; ia j;
1þqiiΔtþoðΔtÞ; i¼ j;

(
where Δt40 and limΔt-0oðΔtÞ=Δt ¼ 0, qijZ0 is the transition rate
from i to j and if ia j, qii ¼ �∑N

j ¼ 1; ja iqij.
Since the transition probability depends on the transition rates

for the continuous-time Markov jump systems, the transition rates
of the jumping process are considered to be partly accessible in
this paper. For instance, the transition rate matrix for system (1)
with N operation modes can be expressed as

q11 ? … ?

q21 ? … q2N
⋮ ⋮ ⋱ ⋮
? qN2 … qNN

266664
377775;

where “?” represents the unknown transition rate. Define,
S ¼ Si

1 [ Si
2, 8 iAS, where Si

1 ¼ fj : qij is knowng and Si
2 ¼ fj : qij

is unknowng.

Remark 1. When Si
1 ¼ S, Si

2 ¼ 0, it is reduced to the case where
the transition probability rates of the Markovian jump process
frðtÞ; tZ0g are completely known. When Si

1 ¼ 0, Si
2 ¼ S, it means

the transition probability rates of the Markovian jump process
frðtÞ; tZ0g are completely unknown. Here, we combine these two
cases and consider a general form.
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