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h i g h l i g h t s

• Compliant steering actuators usually do not define well the ICR, which needs to be estimated.
• A new ICR estimation algorithm working in the steering actuators’ space is proposed.
• It is designed for platforms with centred and sidewards off-centred wheels.
• The proposed algorithm gives a better estimation compared to other alternatives.
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a b s t r a c t

In order to move safely and accurately, mobile platforms using steerable wheels require adequate
coordination of their actuators. One possibility to achieve actuator coordination is to control the motion
of the chassis’ instantaneous centre of rotation (ICR) and motion around it. Considering the chassis as a
rigid body, the ICR is located at the intersection of each wheel’s zero motion axis. In practice however,
these axes may not concur, in particular when compliant actuators are used for wheel steering. They
then no more define precisely an ICR and only an estimation of its position can be computed. Moreover,
most parametrizations of the ICR position bring in singularities with no physical meaning, which hinder
estimation. This paper introduces the H representation, a new parametrization of the motion state space
free of any non-structural singularities, and presents an algorithm which estimates the ICR within the
joint space. The proposed approach is compared in terms of reliability, efficiency, accuracy and robustness
with three methods working within the operational space. Results suggest that the proposed estimation
approach provides the best compromise for these performance indicators.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Omnidirectional mobile platforms can move in any direction
without manœuvring, making them suitable for operation in tight
areas and crowded spaces. One mechanism to provide such capa-
bility are omnidirectional wheels, like wheels made with passive
rollers attached along their circumference [1]. Steerablewheels are
another alternative, allowing a platform to move in any direction
by only changing the orientation of its wheels. Compared to om-
nidirectional wheels, the use of steerable wheels provides more
precise odometry and lower mechanical complexity [2]. Many
platforms use steerable wheels, like Meka B1 [3], the EXOMARS
rover [4], Willow Garage PR2 [5], Rollin’ Justin [6,7], Care-O-bot
[8–10] and AZIMUT [11–13]. Yet, omnidirectional platforms using
steerable wheels are nonholonomic, since the wheels need to be
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reoriented to change the direction of motion. The wheels thus
constrain the chassis motion and need to be carefully coordinated
for the platform to move [14] without generating high internal
forces and slippage caused by actuator antagonism [7,12,15]. To
handle this coordination, motion of the individual actuators must
be linked through kinematicmodelswith themotion of the chassis,
which may be described using two paradigms: the chassis’ twist
(instantaneous linear and angular velocities) or the chassis’ motion
around its instantaneous centre of rotation (ICR). In the case of a
rigid body undergoing planarmovement, the ICR is the point in the
body’s referential frame which has zero velocity at a given instant
in time. Since steerable wheels can only move in the wheel plane,
the zeromotion axis (i.e., the axis perpendicular to thewheel plane
and going through the wheel’s centre, called hereafter propulsion
axis) of each of the platform’s wheels should then concur at the ICR
location [16].

The twist paradigm is often used to control motion of robots
using steerable wheels and is adapted to control quasi-holonomic
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platforms (e.g., using active caster wheels), since the twist com-
ponents then provide independent control inputs [2]. When con-
sidering purely nonholonomic platforms, however, the direction
of motion cannot change instantly and the twist components then
become linked to each other, making it difficult to only use the
twist paradigm [15,17]. As an alternative, the ICR paradigm pro-
vides independent control inputs: the ICR position and the mo-
tion around the ICR. ICR-based control enforces the nonholonomic
constraints, since the propulsion axes must intersect at the ICR
location for the platform to move safely and accurately. It thus
provides an abstraction of the platform’s actuators for control [18]
that also enables easy recovery of the instantaneous physical state
of the platform when needed. Without chassis motion, motion of
the steering actuators can still be controlled bymoving the desired
ICR, for example to make very sharp turns that require the robot to
stop and reconfigure itswheels’ position,whereas a null twist gives
no information to control steering and a separate control algorithm
is needed to do the reconfiguration. In addition, the kinematic
models of platforms using steerable wheels exhibit structural sin-
gularities when the ICR is on a steering axis [7,14,15]. Using the
ICR paradigm makes it possible to define these singularities with
a minimal number of conditions (i.e., the number of steerable
wheels), whereas using the twist paradigm requires checking an
infinite number of conditions, which complexifies the design and
implementation of amotion controller. Hence, even thoughmotion
control of nonholonomic platforms is possible using the twist
paradigm [19], switching to the ICR paradigm is beneficial to easily
handle structural singularities [7].

Using the ICR paradigm also brings challenges to overcome:

1. Most ICR parametrizations introduce singularities that are
not related to singularities in the chassis motion, such as
undefinedness of direction at infinity (for 2D Cartesian coor-
dinates), undefinedness at the pole (for polar and spherical
coordinates) or discontinuities in a parameter when cross-
ing some meridian (for spherical coordinates) [17]. Those
parametrization-induced singularities need to be dealt with
and a singularity-free parametrization could provide more
efficient and simpler ICR determination andmotion control.

2. The ICR is a mathematical concept which enables abstrac-
tion of the platform geometry and actuators, but the only
available source of information to determine its location –
which is needed for ICR-based motion control – are the
actuators’ sensors. With infinite stiffness actuators, perfect
sensors and careful coordination, the assumption of the
complete robot (chassis and wheels) as a single rigid body
would hold and the propulsion axes would concur at the
ICR location. However, a real robot is always imperfect:
it has geometric imperfections, actuators with finite stiff-
ness, stiction and limitations, as well as sensors with noise
and quantification. The robot should then be considered as
a rigid body (the chassis) connected to rigid bodies (the
wheels) that can move wrt the chassis, and the propulsion
axes may not create a well-defined intersection when con-
sidering robots with three or more steerable wheels. This
phenomenon is only made evident after long experimen-
tation times with stiff actuators [7,8]. But when compliant
actuators are used for wheel steering to help minimize ac-
tuator antagonism or to make the robot more responsive
and secure to physical contacts, like with AZIMUT-3 [12,20],
this is always perceptible. In that case, the ICR location still
exists, but it cannot be determined directly by the actuators’
sensors. In practice however, since motion of the platform
is happening, the propulsion axes must have globally a
minimal deviation from the ICR location, which has been
confirmed by experimentation [21]. Compliant actuators

bring the challenge that the propulsion axes do not have
a well defined intersection during motion, but also help
cope with that fact by ensuring that minimal deviations do
not create actuator antagonism leading to slippage. Thus, as
long as motion control ensures a careful coordination of the
actuators and is fed with the most reliable ICR position, the
ICR-based control model stays valid. Determining the most
reliable ICR position may be done either in the operational
space or in the joint space. Using a least squares estimation
(LSE) in the operational space is standard practice [22], but it
has been shown this does not give the most reliable ICR es-
timationwhen the propulsion axes are close to parallel [21].
As an alternative, an Extended Kalman filter (EKF) has been
used in [4], but according to its authors, it does not give
better results than the algorithm proposed in [21], which
works in the joint space.

The aim and contribution of this paper are to present an
approach for ICR estimation that addresses these challenges. It
starts with the definition of a new parametrization of the ICR
position having its roots in projective geometry and free of
parametrization-induced singularities, and an associated repre-
sentation in R3. We collectively refer to the parametrization and
representation as the H representation. An iterative ICR estimation
algorithm working in the joint space, based on [21], then lever-
ages the H representation properties to obtain the best possible
estimation when the ICR is not well defined, i.e., the propulsion
axes do not concur. That algorithm is compared to three other
algorithmsworking in the operational space: one doing no estima-
tion, one using a LSE and one computing the motion constraints’
null-space. Their relative performance is evaluated in terms of
reliability, efficiency, accuracy and robustness, demonstrating the
benefits of using the proposed approach compared to the others
evaluated. Demonstration of the applicability and usefulness of the
proposed H representation and ICR estimation algorithm for ICR-
based motion control of nonholonomic omnidirectional platforms
is presented in [20,23,24].

This paper is organized as follows. Section 2 introduces the H
representation for ICR representation and parametrization. Sec-
tion 3 details the proposed ICR estimation algorithm and the three
other algorithms used for comparison. Section 4 then presents
their use on AZIMUT-3, an omnidirectional platform using four
compliant steerable wheels, with results using simulated and real
data.

2. Motion representation

As formulated by Campion et al. [16], a robot motion can
be seen instantaneously as a rotation around the ICR. Using
two-dimensional Cartesian (R2) or polar (R × S) coordinates
seems a natural choice for parametrizing its position. But those
parametrizations have singularitieswith no physicalmeaning [17].
For instance, going from a slight right turn to a slight left one,
as illustrated on Fig. 1, involves a continuous motion of the
chassis but causes discontinuities in a two-dimensional Cartesian
parametrization: the ICR position is near infinity on the right and
goes directly to infinity on the left without going through the
centre of the chassis. Even though they are not critical to handle,
these singularities occur in a frequently used region of the state
space and interfere with ICR estimation and motion control.

2.1. The real projective plane

Since the different regions representing infinity in R2 are not
connected (x = −∞ is not identified with x = ∞ and the same
for y), parametrizing the ICR motion in R2 without singulari-
ties is impossible. A new two-dimensional topological space is
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