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a b s t r a c t

The reversible jump Markov chain Monte Carlo (RJMCMC) method offers an across-model
simulation approach for Bayesian estimation and model comparison, by exploring the
sampling space that consists of several models of possibly varying dimensions. A naive
implementation of RJMCMC tomodels like Gibbs random fields suffers from computational
difficulties: the posterior distribution for each model is termed doubly-intractable since
computation of the likelihood function is rarely available. Consequently, it is simply impos-
sible to simulate a transition of theMarkov chain in the presence of likelihood intractability.
A variant of RJMCMC is presented, called noisy RJMCMC, where the underlying transition
kernel is replaced with an approximation based on unbiased estimators. Based on previous
theoretical developments, convergence guarantees for the noisy RJMCMC algorithm are
provided. The experiments show that the noisy RJMCMC algorithm can be much more
efficient than other exactmethods, provided that an estimatorwith controlledMonte Carlo
variance is used, a fact which is in agreement with the theoretical analysis.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction 1

Model selection is a problem of great importance in statistical science. The aim is to choose which model among a set of 2

possible ones best describes the data y ∈ Y . From a Bayesian perspective, the prior beliefs for each model are reflected by a 3

prior distribution and this information is then updated subjectively when data are observed. This step is typically carried out 4

by calculating the marginal likelihood or evidence for each model, which is defined as the integrated likelihood with respect 5

to the prior measure. In many cases, this quantity cannot be derived analytically and thus needs to be estimated. 6

This paper considers the problem of Bayesian model comparison of doubly-intractable distributions. The motivating 7

application is Gibbs random fields (GRFs), which are discrete-valuedMarkov random fieldswhere an intractable normalising 8

constant that depends on the model parameters, z(θ ), is present for the tractable un-normalised likelihood q(y | θ ). The 9

likelihood density, given a vector of parameters θ ∈ Θ ⊆ Rd and a vector of statistics s(y) ∈ S ⊆ Rd
+
that are sufficient for 10

the likelihood, is 11

f (y | θ ) =
q(y | θ )
z(θ )

=
exp

{
θ⊤s(y)

}∑
y∈Y exp

{
θ⊤s(y)

} . (1) 12

Posterior parameter estimation for GRFs, which have found applicability in areas like image analysis and disease mapping 13

(Friel and Rue, 2007), genetic analysis (François et al., 2006) and social network analysis (Wasserman and Pattison, 1996), 14

is termed a doubly-intractable problem because the normalisation terms of both the likelihood function and the posterior 15
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distribution π (θ | y) ∝ f (y | θ )p(θ ) are intractable. Bayesian model comparison of such models has attracted the attention1

of researchers and several methods have been considered, relying on likelihood simulations (Friel, 2013; Caimo and Friel,2

2013; Everitt et al., 2017a), approximations to the intractable likelihood (Bouranis et al., 2018) and likelihood-free simulation3

techniques like the Approximate Bayesian Computation (ABC) algorithm (Grelaud et al., 2009) .4

In this paper we explore trans-dimensional Markov chain Monte Carlo (MCMC) for GRFs, focusing on the direct approach5

of a single across-model Markov chain using the celebrated reversible jumpMCMC (RJMCMC) technique (Green, 1995). The6

advantage of across-model approaches is that they avoid the need for computing the evidence for each competing model by7

treating themodel indicator as a parameter,where the chain explores simultaneously themodel set and the parameter space.8

In the context of GRFs, however, RJMCMC techniques simply cannot be implemented because the likelihood normalising9

constant z(θ ) cannot be computed point-wise. Below we present a summary of the main contributions of this paper.10

A variant of the RJMCMC algorithm is developed, where the intractable ratio of normalising constants that the acceptance11

probability depends on is approximated by an unbiased estimator. The resulting algorithm falls in the noisy MCMC12

framework (Alquier et al., 2016) as it simulates a chain that is not invariant for the target distribution.13

As pointed out in Alquier et al. (2016), noisy MCMC is connected to pseudo-marginal algorithms (Andrieu and Roberts,14

2009),where an unbiased and positive estimate of the target density is required. In the presence of an intractable normalising15

constant, the pseudo-marginal approach requires an unbiased estimate of 1/z(θ ). However, the reciprocal 1/ẑ(θ ) yields a16

biased approximation of 1/z(θ ) and so is not directly applicable to inference using pseudo-marginal techniques. Recently,17

Lyne et al. (2015) addressed this bias with Russian Roulette sampling, which yields an asymptotically exact algorithm. The18

implementation of the algorithm is computationally expensive, however, creating difficulties when inferring the model19

parameters for GRFs. Non-negative unbiased estimators have also been studied in Jacob and Thiery (2015), which showed20

that finding such an estimate is very challenging.21

Consequently, we do not pursue such a computational approach in this paper. Instead, motivated by the inefficiency22

of a standard RJMCMC algorithm, we develop a noisy RJMCMC sampler that targets an approximated posterior distribution,23

rather than the desired one.We extend the theoretical analysis of noisyMCMC algorithms proposed in Alquier et al. (2016) to24

trans-dimensional kernels, providing bounds on the total variation between the Markov chain of a noisy RJMCMC algorithm25

and a Markov chain with the desired target distribution under certain conditions.26

We show that noisy RJMCMC algorithms are only useful when the estimator of the ratio of normalising constants has a27

small variance. Motivated by Gelman and Meng (1998), we propose a smoother transition path between different models28

and resort to an alternative estimator with lower variance. We demonstrate empirically that this idea simultaneously:29

(i) improves themixing of the RJMarkov chain and (ii) decreases the asymptotic bias between the exact RJ Markov chain and30

its noisy approximation. Finally, we construct efficient jump proposal distributions for random walk (RW) noisy RJMCMC,31

which could be useful in the context of a large number of nested competing models.32

The outline of the article is as follows. Section 2 introduces the reader to basic concepts regarding Bayesian model33

comparison and to the reversible jump MCMC formulation. In Section 3 we discuss the extension of the reversible jump34

methodology to doubly-intractable posterior distributions and present theoretical properties and practical aspects of the35

RJMCMC samplers under such computational difficulties. Section 4 presents some proposal tuning strategies for noisy36

RJMCMC. In Section 5 we study the theoretical behaviour of the noisy RJMCMC algorithm and derive convergence bounds.37

We investigate the performance of noisy RJMCMC with a detailed numerical study that focuses on social network analysis38

in Section 6. We conclude the paper in Section 7 with final remarks.39

2. Preliminaries40

Suppose a finite set of competing models M = {M1,M2,M3, . . .} are under consideration to describe the data y. In the41

Bayesian setting each model Mm, where m ∈ {1, 2, 3, . . .}, is characterised by a likelihood function f (y | θm,Mm) = fm(y |42

θm) ∝ qm(y | θm), parameterised by an unknown parameter vector θm ∈ Θm. Each model is also associated with a prior43

distribution p(θm | Mm) = pm(θm), used to express the beliefs about the parameter vector prior to observing the data y. The44

focus of interest in Bayesian inference for each competing model is the posterior distribution45

π (θm | y,Mm) =
fm(y | θm)pm(θm)
π (y | Mm)

. (2)46

The prior beliefs for each model are expressed through a prior distribution p(Mm), such that
∑

m∈M p(Mm) = 1.47

2.1. Bayesian model comparison48

The marginal likelihood or model evidence for model Mm is49

π (y | Mm) =
∫
Θm

fm(y | θm)pm(θm) dθm50
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