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a b s t r a c t

This paper investigates estimation methods for the conditional variance function with
a single index structure. We introduce two estimators of the single index parameter
vector throughmaximizing local linear quasi-likelihood functions. The resulting parameter
index estimators can achieve root-n consistency and the variance function estimator can
maintain positivity. We show that the proposed methods can estimate the conditional
variance with the same asymptotic efficiency as if the conditional mean function is given.
Asymptotic distributions of the proposed estimators are also derived. Simulation studies
and a real data application demonstrate our estimation approaches.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Exploring estimation methods for conditional variance functions has been an interesting topic in many disciplines of
research. Consider the nonparametric heteroscedastic model

Y = M(X) + V 1/2(X)ε, (1)

where Y ∈ R1 represents the univariate response and X is the explanatory variable which can be univariate or multivariate,
with the latter being the focus of this article. The term ε is generally assumed to satisfy E(ε|X) = 0 and E(ε2

|X) = 1. Note
that we assume the variance of ε conditioning onX is unit. If otherwise, the variance can be absorbed into the nonparametric
function V (X). Under these assumptions we have M(X) = E(Y |X) and V (X) = Var(Y |X), both of which are unknown and
need to be estimated.

For X ∈ R1, methods of estimating V (X) are commonly based on local linear smoothing techniques; see, for example, Fan
and Gijbels (1996), Ruppert et al. (1997) and Fan and Yao (1998). These methods first estimate the conditional mean and
then the conditional variance by regressing the squared residuals. The resulting estimator is proved to be asymptotically
equivalent to that with M(x) known. However, the local linear conditional variance estimator cannot guarantee positive
values, hence making this approach deficient. Xu and Phillips (2011) proposed a re-weighted local constant estimator
which inherits the nonnegative property of the variance function and retains the asymptotic bias and variance of the local
linear estimator. Some other estimators based on maximizing the local likelihood function were also proposed to tackle the
nonnegative problem, see Avramidis (2002), Ziegelmann (2002) and Yu and Jones (2004). Compared with the conventional
local linear estimator, the resulting maximum likelihood estimators have more promising properties and better numerical
performance. Actually in this paper this idea is generalized to handle our single index variance model.

If model (1) is extended to the multivariate case that X ∈ Rp, the ‘‘curse of dimensionality’’ urges us to restrict the form
of the conditional variance function to a lower dimension without any loss of information. In this paper we concentrate on

E-mail address: zhfbeyond@126.com.

https://doi.org/10.1016/j.csda.2018.06.008
0167-9473/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.csda.2018.06.008
http://www.elsevier.com/locate/csda
http://www.elsevier.com/locate/csda
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csda.2018.06.008&domain=pdf
mailto:zhfbeyond@126.com
https://doi.org/10.1016/j.csda.2018.06.008


H. Zhang / Computational Statistics and Data Analysis 128 (2018) 58–72 59

the following single index structure for both conditional variance and conditional mean:

Y = m(β⊤

0 X) + v1/2(α⊤

0 X)ε, (2)

where β0 and α0 are two p-dimensional vectors, and ε is also assumed to satisfy E(ε|X) = 0 and E(ε2
|X) = 1. Usually the

error term ε is assumed to be Gaussian, which facilitatesmaximum likelihood function. However, wewill show the Gaussian
assumption is not essential, leading to our quasi-likelihood estimation. For model identification, we further assume that
|β0| = |α0| = 1 where |·| denotes the usual Euclidian norm, and their first elements are positive. This paper focuses on the
estimation of α0.

For the single index model, various estimation methods have been proposed, for example, Härdle and Stoker (1989),
Ichimura (1993), Härdle et al. (1993), Horowitz and Härdle (1996), Yin and Cook (2005) and Xia (2006). The refined OPG
method and refined MAVE method proposed by Xia (2006) outperform many other existing methods on account of their
being free of strong restrictions on X design, root-n consistency of the parameter index estimators and good estimation
accuracy. However, the methods of Xia (2006) are mainly intended for the conditional mean function m(β⊤

0 X) and the
parameter index β0 therein, rather than the single index conditional variance model v(α⊤

0 X). To indicate the difference,
we shall denote Xia’s methods by R-OPGm and R-MAVEm respectively.

Note that if the conditional mean function is given, then model (2) reduces to the single index volatility model r =

σ (α⊤

0 X)ε, where r = Y −m(β⊤

0 X) and σ (·) = v1/2(·); see Xia et al. (2002a) and Engle (1982). Our methods for estimating the
single index volatility model are based on maximizing local quasi-likelihood functions. The formulated objective function,
although derived from the error term being assumed Gaussian, can be deemed as an ‘‘average variance’’ with a ‘‘penalty’’
term, the latter removing trivial solutions. Like R-OPGm and R-MAVEm, we also use techniques such as single dimensional
kernels and alternating iteration procedures for the single index volatility model. Similarly, we denote our two estimation
methods by L-OPGv and L-MAVEv. When dealing with model (2) with the conditional mean function unknown, we comply
with the residual based methods as for model (1), namely, first to use R-MAVEm of Xia (2006) to estimate β0 and m(·), and
second to use L-OPGv and L-MAVEv as stated above to estimate α0 and v(·) by regressing the estimated residuals. We will
show that, in this case, our proposed methods can estimate the conditional variance with the same asymptotic efficiency as
if the conditional mean function is given.

It is worth mentioning that model (2) is a dimension reduction model. If we denote B = (β0, α0), then the space spanned
by the columns of B, S(B) say, is the central dimension reduction subspace (CS); see, e.g., Cook (1998b), Cook and Li (2002), Li
(1991) andXia et al. (2002b). Further, it can be seen thatβ0 ∈ SE(Y |X) (CMS), the centralmean subspace; see, e.g., Cook (1998a),
Cook and Li (2002), Li (1992), and α0 ∈ SVar(Y |X) (CVS), the central variance subspace; see, e.g., Yin and Cook (2002). A number
of dimension reductionmethods are capable of recovering β0 andα0; seeMa and Zhu (2013) for detailed discussion. Thewell
known dMAVE, the density basedMAVEmethod of Xia (2007), can handle model (2). In fact in the experiment section of Xia
(2007), a simulation for model (2) has been conducted to demonstrate the performance of dMAVE. Zhu et al. (2013) address
the estimate of model (2) through estimating equations. This approach is an extension of the so called semiparametric
method of Ma and Zhu (2012), which also pertains to a general class of dimension reduction methods. Another emerging
approach to single index models is based on maximizing a kernel version of the Hilbert–Schmidt Independence Criterion.
For example, see Zhang and Yin (2015). This approach can also handle model (2). Owing to the popularity of the above
three methods in respect of dimension reduction, we shall compare them on finite sample performance with our estimation
methods developed in this paper.

The rest of the article is organized as follows. Section 2 describes the details of the quasi-likelihood estimation methods
of the single index variance model, including the derivation and the algorithms. Section 3 studies the asymptotic normality.
In Section 4, some numerical simulations are carried out to evaluate the finite sample performance of our methods. We
also report some results from an empirical study of the Hitters’ salary data in Section 5. Section 6 gives a short discussion.
Regularity conditions and proofs of results are presented in the Appendix.

2. Quasi-likelihood estimation

Let (Yi,Xi, i = 1, . . . , n) with Yi ∈ R1 and Xi ∈ Rp be an i.i.d. random sample from the population (Y ,X). Under model
(1), if the error terms (ε1, ε2, . . . , εn) are assumed to be independent and each εi|Xi = xi ∼ N(0, 1), we have

Yi|Xi = xi ∼ N(M(xi), V (xi)). (3)

Then the sample log-likelihood function of Y |X = x, with some constant terms ignored, can be written as

L = −
1
2

n∑
i=1

{ r2i
V (Xi)

+ log V (Xi)
}
, (4)

where ri = Yi − M(Xi). The true residual ri here corresponds to the single index volatility model with the conditional mean
function known. Bymodel (2) we haveM(Xi) = m(θ⊤

0 Xi) and V (Xi) = v(α⊤

0 Xi). The R-OPGm and the R-MAVEmmethods are
capable of estimating β0 andm(·), and hence r . At this stage we retain ri in (4) instead of its estimator r̂i for the sake of easy
elaboration. Substituting α0 by α in (4) and writing L as L(α), L(α) is a loss function. If the function v(·) is given, maximizing
L(α) with respect to α will result in the classic nonlinear least squares estimator of α0. However, the conditional variance
function is unknown here. Local linear smoothing technique should be employed, which can be expounded in two separate
ways as follows.
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