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h i g h l i g h t s

• This paper provides a novel visualization method for any arbitrary matrix.
• The proposed approach can be used to inspect the mean and the covariance structure.
• There is great flexibility for atypical data formats such as dissimilarity matrices.
• An R package implementing this visualization methodology is provided.
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a b s t r a c t

Most high dimensional data visualization techniques embed or project the data onto a low
dimensional space which is then used for viewing. Results are thus limited by how much
of the information in the data can be conveyed in two or three dimensions. Methods1
are described for a lossless functional representation of any real matrix that can capture
key features of the data, such as distances and correlations. This approach can be used to
visualize both subjects and variables as curves, allowing one to see patterns of subjects,
patterns of variables, and how the subject and variable patterns relate to one another. A
theoretical justification is provided for this approach, and various facets of the method’s
usefulness are illustrated on both synthetic and real data sets.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction 1

Understanding high dimensional data is crucial to information conveyance and hypothesis formation. Visualization 2

is a critical component of human understanding, and as such has received much attention. However, the problem of 3

visualizing high dimensional data is, in the words of Bertini et al. (2011), ‘‘notoriously complex and cumbersome’’. The task 4

of information extraction through visual processes has seen a wide array of approaches. Most of these, however, follow a 5

fixed set of themes, building and adapting core approaches to suit the ever growing needs of researchers faced with data 6

having high dimensionality or complex structure. 7

The approach proposed in this paper is based on representing any matrix as a set of curves and then visualizing the 8

resulting curvilinear representation of the datamatrix. Two existing approaches to visualize data through curves are parallel 9

coordinates (Wegman, 1990; Inselberg and Dimsdale, 1990) and Andrews curves (Andrews, 1972). The idea behind parallel 10

coordinates is to use parallel rather than orthogonal axes, and represent each observed data point as a line connecting the 11

axes; hence n data points in a d-dimensional space can be represented as n sequences of d− 1 connected line segments. An 12

example of this is given in Fig. 1c. Parallel coordinates have been extended in a number of ways, such as angular histograms 13
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Fig. 1. Wine data using PCA, Andrews curves, and the proposed partial Fourier series (PFS) representation. Each point in (a) and line in (b) through (e)
corresponds to a wine; the colors correspond to three cultivars. (d) and (e) show the PFS representations of the best rank-2 and rank-7 approximations of
the data respectively, showing that for higher rank representations we are just trying to visualize the noise in the data rather than the signal. In (f), the
solid lines correspond to the wines and the dotted lines/shaded regions correspond to variables; the inner product of the ith wine curve and the jth variable
curve equals Yij . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

(Geng et al., 2011) and parallel sets (Bendix et al., 2005; Hofmann and Vendettuoli, 2013) (which extend parallel coordinates1

to categorical data).2

The second approach that maps high dimensional points to curves, which is closer in spirit to our proposed approach, is3

Andrews curves. Andrews (1972) first had the idea of representing a vector of measurements as a curve; specifically, for4

Yi = (Yi1, Yi2, . . . , Yiq) Andrews suggested plotting the curve5

fYi (t) = Yi1/
√
2 + Yi2 sin(t) + Yi3 cos(t) + Yi4 sin(2t) + Yi5 cos(2t) + · · · .6

This approach has the benefits of7

1. mean preservation, i.e., fȲ (t) =
1
n

∑
fYi (t),8

2. distance preservation,
∫ π

−π

(
fYi (s) − fYj (s)

)2ds ∝ ∥Yi − Yj∥
2,9

3. the representation corresponds to themagnitude of one-dimensional projections onto the vector (1/
√
2, sin(t), cos(t),10

sin(2t), cos(2t), . . .), and by plotting the Andrews curves we are assessing the continuum of these one dimensional11

projections, and12

4. if Yij are uncorrelated with constant variance σ 2, the variance of fYi (t) is proportional to σ
2.13

Koziol and Hacke (1991) extended this approach to paired multivariate data. Various tweaks on Andrews’ original method14

have been proposed, such as those given by Gnanadesikan (1997), Kulkarni and Paranjape (1984), Khattree and Naik (2002)15

and García-Osorio and Fyfe (2005). Functions other than combinations of sine and cosine terms have been proposed as well,16

including Chebyshev polynomials, Legendre polynomials, andwavelets (Embrechts andHerzberg, 1991; Rietman and Layadi,17

2000), though they have not as yet seen widespread use.18

Andrews curves have their disadvantages. First, as seen by the many variations on the functional structure used, this19

approach is largely ad hoc with little theoretical foundation for support. Second, they are not order preserving. That is,20

it is critically important to place the most important variables alongside the large period terms as these are the terms21

that humans are most adept at inspecting. However, this has been shown to be a NP-complete optimization problem22
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