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a b s t r a c t

We consider simultaneous semiparametric estimation of conditional quantiles formultiple
responses using a dynamic single-index structure. Motivated by a financial application, a
market factor index is constructed that is shared among different portfolios which results
in a more interpretable and efficient model, compared to separately building multiple
conditional quantiles. On the other hand, the link functions are allowed to be different
across portfolios. The asymptotic normality of the index parameter is established, as well
as the convergence rate of the nonparametric functions. Monte Carlo studies demonstrated
the advantages of the proposed estimator and an application to financial data is used to
illustrate the method.
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1. Introduction 1

Linear quantile regression, proposed in Koenker and Bassett Jr (1978), has received much attention due to its ability to 2

produce a more complete picture of the conditional distribution of the response, compared to mean regression. Due to this 3

nature, quantile regression is frequently applied to finance, medicine and biology in which researchers are often interested 4

in the tail of the distribution to control certain risks (Tsai, 2012; Madadizadeh et al., 2016; He et al., 2016). 5

Although frequently used in the literature, parametric models impose stringent structural assumptions and lack the 6

flexibility to deal with various nonlinearity present in some data sets. Semiparametric models, on the other hand, are more 7

flexible while retaining some interpretability and efficiency of parametricmodels (Stone, 1985; Hastie and Tibshirani, 1993; 8

Fan and Zhang, 1999; Cai et al., 2000; Cai andXiao, 2012). In thiswork,we are focusing on the single-indexmodels (Ichimura, 9

1993) which can be roughly regarded as a dimension reduction approach and the response is modelled as a nonparametric 10

function of the constructed index. More specifically, the single-index model is given by 11

Y = g(XTβ) + e, 12

where Y is the response, X = (X1, . . . , Xp)T is the p-dimensional predictor, g is the unknown link function, β is the index 13

parameter, and e represents the error term. For quantile regression at quantile level τ ∈ (0, 1), we assume P(e ≤ 0|X) = τ . 14

In the single-index model (SIM), the reduction in dimension is achieved by the index XTβ and the response is only related 15

to the predictor through the index value. The index can often be easily interpreted for various applications. The quantile 16

single-index models have been investigated recently in Wu et al. (2010), Kong and Xia (2012) and Ma and He (2016). 17
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Another important studyworthmentioning is Christou and Akritas (2016) inwhich the authors proposed a novel estimation1

approach for quantile single-index regression which avoided the iterative steps typically used in previous approaches.2

In this work, we consider multivariate responses Y = (Y1, . . . , Yq)T and we are interested in the τ conditional quantiles3

for all Yl, 1 ≤ l ≤ q, given the common predictors X = (X1, . . . , Xp)T. Under the modelling framework of SIM, we can4

construct the estimators for each response separately using the specification5

Yl = gl(XTβl) + el, (1)6

and as such the q regression problems are totally unrelated. Throughout the paper we assume p and q are fixed.7

Our study is motivated by a financial application regarding daily returns of multiple portfolios, which compose our8

multiple responses. Nobel laureate Eugene Fama and Kenneth French have created a 5-factor model (Fama and French,9

2015) to describe stock returns. This was proposed in the framework of classical linear regression model. However, linear10

models can be too restrictive formany data sets which do notmodel possible nonlinear relationships appropriately. It is thus11

interesting to extend this using SIM, given its flexibility and thus a potential for better fit. Using a SIM,we effectively construct12

an index that is a linear combination of the five factors, much as in linear models, thus retaining largely the interpretability13

of the ‘‘factor index’’. However, in such applications it may be problematic to use a different index for different portfolios.14

That is, it is not so intuitive to say that portfolio 1 is determined by a certain linear combination of factors, while portfolio15

2 is determined by another different linear combination of factors. Thus we propose to change the multivariate regression16

model to17

Yl = gl(XTβ) + el,18

where β is the common index parameter for all portfolios. We retain multiple portfolio-dependent link functions gl to19

represent the variability between portfolios, which certainly have different return profiles.20

Furthermore, a second extension adopted here is motivated from the literature that demonstrated the time-varyingness21

of similar prediction models (Zhang et al., 2013), leading to22

Yl = gl(XTβ, T ) + el,23

where T is the time variable. In the previous theoretical studies of quantile SIM, the data are assumed to be independently24

and identically distributed (i.i.d.), which are not suitable for financial data. Thus a final contribution in this work is to extend25

the theoretical results to stationary time series data under appropriate geometric mixing conditions, similar to that used26

in Cai et al. (2000), Cai and Wang (2008), Cai and Xiao (2012) and Cai et al. (2015).27

The rest of the article is organized as follows. In Section 2, we detail the model and the estimator based on spline28

approximation for link functions, and the asymptotic properties are also presented. Section 3 contains some Monte Carlo29

studies and the results of the analysis of the portfolio daily return data. The paper concludes with a discussion in Section 4.30

The technical details of the proofs are relegated to the Appendix.31

2. Multivariate quantile single-index models32

2.1. Estimation method33

We consider the single-index model34

Yil = gl(XT
i β, Ti) + eil,35

where (Xi, Ti, Yi = (Yi1, . . . , Yiq)T, ei = (ei1, . . . , eiq)T) are strictly stationary, g1, . . . , gq are the q link functions, P(eil ≤36

0|Xi, Ti) = τ , Xi = (Xi1, . . . , Xip)T is the p-dimensional vector of covariates, and Ti is the time variable. Besides, we always37

assume ∥β∥ = 1 andβ1 > 0 for identifiability.We assume the joint density of (Ti,Xi) exists on its support,which in particular38

excludes the degenerate case that Ti is a deterministic function of Xi. Other than that, the dependence between Ti and Xi can39

be arbitrary.40

We use polynomial splines to approximate the components. Assuming XTβ is supported on [a, b] (in practice, given a41

current estimate of β, we can set a and b to be the minimum and maximum value of XT
i β, respectively), we use polynomial42

splines to approximate the link function. Let τ0 = a < τ1 < · · · < τK ′
1

< b = τK ′
1+1 be a partition of [a, b] into43

subintervals [τl, τl+1), l = 0, . . . , K ′

1 with K ′

1 internal knots. We only restrict our attention to equally spaced knots although44

data-driven choice can be considered such as putting knots at certain sample quantiles of the observed covariate values.45

A polynomial spline of order s1 is a function whose restriction to each subinterval is a polynomial of degree s1 − 1 and46

globally s1 − 2 times continuously differentiable on [a, b]. The collection of splines with a fixed sequence of knots has a47

B-spline basis b1(x) = {b1,1(x), . . . , b1,K1 (x)} with K1 = K ′

1 + s1. Similarly, assuming without loss of generality that Ti is48

supported on [0, 1], we can construct B-spline basis b2(t) = {b2,1(t), . . . , b2,K2 (t)}. We assume B-spline basis is normalized49

to have
∑K1

l=1b1,l(x) =
√
K1 and

∑K2
l=1b2,l(x) =

√
K2. Such normalization is not essential and is only imposed to simplify50

some expressions in theoretical derivations later. Finally, for a bivariate function supported on [a, b] × [0, 1], we construct51

the tensor basis B(x, t) = (B1(x, t), . . . , BK (x, t))T = (b1,1(x)b2,1(t), . . . , b1,K1 (x)b2,K2 (t))
T where K = K1K2.52
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