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a b s t r a c t

Likelihood-free methods, such as approximate Bayesian computation, are powerful tools
for practical inference problemswith intractable likelihood functions. Markov chainMonte
Carlo and sequential Monte Carlo variants of approximate Bayesian computation can
be effective techniques for sampling posterior distributions in an approximate Bayesian
computation setting. However, without careful consideration of convergence criteria and
selection of proposal kernels, such methods can lead to very biased inference or compu-
tationally inefficient sampling. In contrast, rejection sampling for approximate Bayesian
computation, despite being computationally intensive, results in independent, identically
distributed samples from the approximated posterior. An alternative method is proposed
for the acceleration of likelihood-free Bayesian inference that applies multilevel Monte
Carlo variance reduction techniques directly to rejection sampling. The resulting method
retains the accuracy advantages of rejection sampling while significantly improving the
computational efficiency.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction 1

Statistical inference is of fundamental importance to all areas of science. Inference enables the testing of theoretical mod- 2

els against observations, and provides a rational means of quantifying uncertainty in existingmodels. Modern approaches to 3

statistical inference, based onMonte Carlo sampling techniques, provide insight intomany complex phenomena (Beaumont 4

et al., 2002; Pooley et al., 2015; Ross et al., 2017; Stumpf, 2014; Sunnåker et al., 2013; Tavaré et al., 1997; Thorne and Stumpf, 5

2012; Vo et al., 2015). 6

Suppose we have: a set of observations, D; a method of determining the likelihood of these observations, L(θ;D), under 7

the assumption of somemodel characterised by parameter vector θ ∈ Θ; and a prior probability density, p(θ). The posterior 8

probability density, p(θ | D), can be computed using Bayes’ Theorem, 9

p(θ | D) =
L(θ;D)p(θ)∫

Θ
L(θ;D)p(θ)dθ

. (1) 10
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Explicit expressions for likelihood functions are rarely available (Tavaré et al., 1997; Warne et al., 2017; Wilkinson, 2009);1

motivating the development of likelihood-free methods, such as approximate Bayesian computation (ABC) (Stumpf, 2014;2

Sunnåker et al., 2013). ABCmethods approximate the likelihood through evaluating the discrepancy between data generated3

by a simulation of the model of interest and the observations, yielding an approximate posterior,4

p(θ | d(D,Ds) < ϵ) ∝ P(d(D,Ds) < ϵ | θ)p(θ). (2)5

Here, Ds ∼ f (D | θ) is data generated by the model simulation process, f (D | θ), d is a discrepancy metric, and ϵ > 0 is the6

acceptance threshold. Due to this approximation, Monte Carlo estimators based on Eq. (2) are biased (Barber et al., 2015).7

In spite of this bias, however, ABC methods have proven to be very powerful tools for practical inference applications in8

many scientific areas, including evolutionary biology (Beaumont et al., 2002; Tavaré et al., 1997; Thorne and Stumpf, 2012),9

ecology (Stumpf, 2014), cell biology (Ross et al., 2017; Johnston et al., 2014; Vo et al., 2015) and systems biology (Wilkinson,10

2009).11

1.1. Sampling algorithms for ABC12

The most elementary implementation of ABC is ABC rejection sampling (Pritchard et al., 1999; Sunnåker et al., 2013),13

see Algorithm 1. This method generates N independent and identically distributed samples θ1, . . . , θN from the posterior14

distribution by accepting proposals, θ∗ ∼ p(θ), when the data generated by the model simulation process f (D | θ∗) is15

within ϵ of the observed data, D, under the discrepancy metric d(D, ·). ABC rejection sampling is simple to implement,16

and samples are independent and identically distributed. Therefore ABC rejection sampling is widely used in many17

applications (Browning et al., 2018; Grelaud et al., 2009; Navascués et al., 2017; Ross et al., 2017; Vo et al., 2015). However,18

ABC rejection sampling can be computationally prohibitive in practice (Barber et al., 2015; Fearnhead and Prangle, 2012).19

This is especially true when the prior density is highly diffuse compared with the target posterior density (Marin et al.,20

2012), as most proposals are rejected.21

Algorithm 1 ABC rejection sampler
1: for i = 1, . . . ,N do
2: repeat
3: Sample prior, θ∗ ∼ p(θ).
4: Generate data, Ds ∼ f (D | θ∗).
5: until d(D,Ds) ≤ ϵ

6: Set θi
← θ∗.

7: end for

To improve the efficiency of ABC rejection sampling, one can consider a likelihood-free modification of Markov chain22

Monte Carlo (MCMC) (Beaumont et al., 2002; Marjoram et al., 2003; Tanaka et al., 2006) in which a Markov chain is23

constructed with a stationary distribution identical to the desired posterior. Given the Markov chain is in state θi, a state24

transition is proposed via a proposal kernel, K (θ | θi).25

The Metropolis–Hastings (Hastings, 1970; Metropolis et al., 1953) state transition probability, h, can be modified within26

an ABC framework to yield27

h =

⎧⎪⎨⎪⎩min
(
p(θ∗)K (θi

| θ∗)
p(θi)K (θ∗ | θi)

, 1
)

if d(D,Ds) ≤ ϵ,

0 otherwise.

28

The stationary distribution of such aMarkov chain is the desired approximate posterior (Marjoram et al., 2003). Algorithm 229

provides a method for computing NT iterations of this Markov chain.30

While MCMC-ABC sampling can be highly efficient, the samples in the sequence, θ1, . . . , θNT , are not independent. This31

can be problematic as it is possible for the Markov chain to take long excursions into regions of low posterior probability.32

This incurs additional bias that is potentially significant (Sisson et al., 2007). A poor choice of proposal kernel can also have33

considerable impact upon the efficiency of MCMC-ABC (Green et al., 2015). The question of how to choose the proposal34

kernel is non-trivial. Typically proposal kernels are determined heuristically. However, automatic and adaptive schemes are35

available to assist in obtaining near optimal proposals in some cases (Cabras et al., 2015; Roberts and Rosenthal, 2009).36

Another additional complication is that of determining when theMarkov Chain has converged; this is a challenging problem37

to solve in practice (Roberts and Rosenthal, 2004).38

Sequential Monte Carlo (SMC) sampling was introduced to address these potential inefficiencies (Del Moral et al., 2006)39

and later extended within an ABC context (Sisson et al., 2007; Drovandi and Pettitt, 2011; Toni et al., 2009). A set of40

samples, referred to as particles, is evolved through a sequence of ABC posteriors defined through a sequence of T acceptance41

thresholds, ϵ1, . . . , ϵT (Sisson et al., 2007; Beaumont et al., 2009). At each step, t ∈ [0, T ], the current ABC posterior,42

p(θ | d(D,Ds) < ϵt ), is approximated by a discrete distribution constructed from a set of NP particles θ1
t , . . . , θ

NP
t with43
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