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a b s t r a c t

A fast bivariate smoothing approach for symmetric surfaces is proposed that has a wide
range of applications. It is shown how it can be applied to estimate the covariance function
in longitudinal data as well as multiple additive covariances in functional data with
complex correlation structures. The proposed symmetric smoother can handle (possibly
noisy) data sampled on a common, dense grid as well as irregularly or sparsely sampled
data. Estimation is based on bivariate penalized spline smoothing using a mixed model
representation and the symmetry is used to reduce computation time compared to the
usual non-symmetric smoothers. The application of the approach in functional principal
component analysis for very general functional linear mixed models is outlined and
its practical value is demonstrated in two applications. The approach is evaluated in
extensive simulations. Documented open source software is provided that implements
the fast symmetric bivariate smoother building on established algorithms for additive
models.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Covariance functions play a central role in many areas of statistics. They summarize the dependency between stochastic
observations and encode smoothness assumptions about (observed or latent) random processes.We propose a fast bivariate
smoothing approach for symmetric surfaces which can estimate covariance functions in a wide range of data situations.
Our approach can handle dependent processes based on an additive decomposition of the covariance function and is also
applicable to processes that are observed on irregular or sparse grids.

In functional data analysis (FDA; see, e.g., Ramsay and Silverman, 2005), covariance functions are at the heart of functional
principal component analysis (FPCA), a key tool for dimension reductionbasedon an eigen analysis of the covariance operator
of a random process. FPCA is commonly used to estimate the model parameters in functional predictor and functional
response regression models (see Morris, 2015 for an overview). Other examples that are based on covariance functions
include functional discriminant analysis (James and Hastie, 2001) and functional canonical correlation analysis (Leurgans
et al., 1993). In longitudinal data analysis (LDA), where measurements are frequently recorded at irregularly spaced time
points, the correct specification of the covariance benefits the estimation efficiency of the fixed effects and improves the
individual predictions (cf. Fan et al., 2007). The covariance is also a crucial ingredient in time series analysis, e.g., in risk
models and portfolio allocation (cf. Tai, 2009). The interest commonly lies in a single time series in contrast to FDA (and
LDA) where multiple curves are observed, e.g., over time. In principle, our symmetric smoothing approach is also applicable
to time series which is, however, not the focus in this paper.
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Covariance functions are commonly assumed to be smooth. Thus, when the observed curves are not sufficiently smooth
(i.e., observed with error) or not measured on a common dense grid, smoothing becomes necessary at some point during
covariance estimation. Directly smoothing the observed curves (see, e.g., Besse and Ramsay, 1986), however, is very difficult
or impossible for sparsely observed data which are frequently recorded both in FDA and LDA (Yao et al., 2005). Moreover,
pre-smoothing the observed curves removes the measurement error, which is not accounted for in subsequent estimation
steps. We pursue an alternative approach and apply bivariate smoothing to the sample covariance of the observed data
points.

Most existing work on non-parametric covariance estimation is either restricted to independent functional (or longitudi-
nal) observations and/or only applies to data sampled on a common grid. Furthermore,most bivariate smoothing approaches
are not specifically designed for covariances. They do not exploit the symmetry of the estimated surface and thus use
redundant information in the available data. To the best of our knowledge, previous approaches have never addressed these
issues simultaneously. They can be divided according to three main criteria: (1) the generality of the assumed correlation
structure in the data, (2) the generality of possible sampling grids, and (3) the estimation procedure including the selection
of the degree of smoothing.

A number of approaches address covariance smoothing in LDA. They are restricted to independent curves but allow for
general sampling grids. Smoothing is either accomplished by bivariate kernel smoothing (e.g., Staniswalis and Lee, 1998;
Yao et al., 2003, 2005) or by bivariate (penalized) spline smoothing (e.g., Kauermann and Wegener, 2011). The degree of
smoothing is either chosen by visual inspection (Staniswalis and Lee, 1998), different leave-one-curve-out cross-validation
algorithms (e.g., Yao et al., 2003, 2005) or based on a mixed model representation (e.g., Kauermann and Wegener, 2011).
These approaches do not account for the symmetry of the estimated surface. James et al. (2000) directly estimate the smooth
eigenfunctions of the covariance function. They estimate a reduced rank mixed effects model via the EM algorithm and use
B-spline basis functions to represent the eigenfunctions of the covariance operator. Peng and Paul (2009) estimate the
same reduced rank model based on a more efficient Newton–Raphson procedure on the Stiefel manifold. The extension of
these reduced rank methods to complex correlation structures is not straightforward. Xiao et al. (2017) recently proposed
a bivariate smoother designed for covariance smoothing which can be used for sparsely observed, independent functions.
They use bivariate penalized B-splines and enforce a symmetry constraint on the spline coefficients which we take up in our
extension to correlated curves. Estimation is done by a three-step procedurewhich accounts for the covariance of the sample
covariance. Their leave-one-curve-out cross-validation procedure for selecting the smoothing parameter is not applicable
for correlated functional data, however.

Other covariance smoothing approaches can be applied to correlated functions but are restricted to functions sampled
on a common grid and considerably simpler correlation structures than ours. Di et al. (2009) and (Greven et al., 2010) use
bivariate penalized splines and select the smoothing parameter using restricted maximum likelihood (REML; Patterson and
Thompson, 1971) estimation. Shou et al. (2015) apply amethod ofmoments approach based on symmetric sums represented
in a sandwich form. For smoothing, they propose to use an extension of the fast covariance estimation algorithmof Xiao et al.
(2016b) to correlated functions. Di et al. (2014) extend the functional random intercept model of Di et al. (2009) to sparsely
sampled functional data, but the correlation structure remains less general than ours and an extension is not straightforward.
More general correlation structures are allowed in the approach of Cederbaum et al. (2016) that is also suitable for sparsely
and irregularly sampled functional data. Their focus lies, however, on a model with crossed functional random effects
and estimation is only discussed for this special case. Apart from considering less general correlation structures, all these
approaches neither avoid the use of redundant information nor account for the symmetry of the smoothed surface.

We propose a fast symmetric bivariate smoothing approach that applies to datawith a broad range of possible correlation
structures, much broader than existingmethods. Furthermore, our approach is well-suited for (possibly noisy) data sampled
on a common, dense grid as well as for irregularly or sparsely sampled data. Strength is borrowed by pooling information
across different curves, which is particularly important for curves observed on sparse, unequal grids. The smoothing
approach we present is widely applicable: In this paper, we demonstrate how it can be applied to longitudinal data as a
special case of independent functional data aswell as to correlated functional datawith very general and complex correlation
structures. For the latter, we extend our bivariate smoothing approach to smoothing additive covariance functions. To the
best of our knowledge, all previous proposals in this field have been restricted to estimating much less general dependency
structures.

We estimate the covariance functions using a smooth method of moments approach represented as a bivariate additive
varying coefficient model. The estimation is based on bivariate penalized splines. We choose the smoothing parameters
using REML, which allows the direct extension to additive bivariate smoothing of a superposition of multiple covariance
functions. This allows our method to be used for a broad range of complex real-word data settings. It also frees us from
having to pre-specify a discrete grid of candidate values for the smoothing parameters that is required for cross-validation
based approaches like (Xiao et al., 2017). Smoothing the sample covariance quickly becomes a high-dimensional problem as
the number of elements in the sample covariance increases quadratically with the number of grid points.We take advantage
of the symmetry of the sample covariance and only estimate the upper triangle of the surface including the diagonal. The
estimates are then reflected across the diagonal to obtain the entire estimated covariance, which is continuous but not
necessarily smooth across the diagonal. To avoid boundary effects on the diagonal and to ensure identifiability of ourmodels,
we enforce smoothness across the diagonal by imposing a symmetry constraint on the spline coefficients, which for the
simplest case of independent curves reduces to that of Xiao et al. (2017). We show how the symmetry constraint can be



Download English Version:

https://daneshyari.com/en/article/6868831

Download Persian Version:

https://daneshyari.com/article/6868831

Daneshyari.com

https://daneshyari.com/en/article/6868831
https://daneshyari.com/article/6868831
https://daneshyari.com

