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a b s t r a c t

One of the most widely used standard procedures for model evaluation in classification
and regression is K -fold cross-validation (CV). However, when it comes to time series
forecasting, because of the inherent serial correlation and potential non-stationarity of the
data, its application is not straightforward and often replaced by practitioners in favour of
an out-of-sample (OOS) evaluation. It is shown that for purely autoregressive models, the
use of standard K -fold CV is possible provided the models considered have uncorrelated
errors. Such a setup occurs, for example, when the models nest a more appropriate model.
This is very common when Machine Learning methods are used for prediction, and where
CV can control for overfitting the data. Theoretical insights supporting these arguments are
presented, alongwith a simulation study and a real-world example. It is shown empirically
that K -fold CV performs favourably compared to both OOS evaluation and other time-
series-specific techniques such as non-dependent cross-validation.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Cross-validation (CV) (Stone, 1974; Arlot and Celisse, 2010) is one of the most widely used methods to assess the
generalizability of algorithms in classification and regression (Hastie et al., 2009), and is subject to ongoing active research
(e.g., Budka and Gabrys, 2013; Borra and Di Ciaccio, 2010; Bergmeir et al., 2014; Moreno-Torres et al., 2012). However, when
it comes to time series prediction, practitioners are often unsure of the best way to evaluate their models. There is often
a feeling that we should not be using future data to predict the past. In addition, the serial correlation in the data, along
with possible non-stationarities, make the use of CV appear problematic as it does not account for these issues (Bergmeir
and Benítez, 2012). Practitioners usually resort to out-of-sample (OOS) evaluation instead, where a section from the end of
the series is withheld for evaluation. In this way, only one evaluation on a test set is considered, whereas with the use of
cross-validation, various such evaluations are performed. So, by using OOS, the benefits of CV, especially for small datasets,
cannot be exploited. One important part of the problem is that in the traditional forecasting literature, OOS evaluation is the
standard evaluation procedure, partly because fitting of standard models such as exponential smoothing (Hyndman et al.,
2008) or ARIMA models are fully iterative in the sense that they start estimation at the beginning of the series. In addition,
some research has demonstrated cases where standard CV fails in a time series context. For example, Opsomer et al. (2001)
show that standard CV underestimates bandwidths in a kernel estimator regression framework if autocorrelation of the
error is high, so that the method overfits the data. As a result, several CV techniques have been developed especially for the
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dependent case (Györfi et al., 1989; Burman and Nolan, 1992; Burman et al., 1994; McQuarrie and Tsai, 1998; Racine, 2000;
Kunst, 2008).

This study addresses the problem in the following way. When purely (non-linear, non-parametric) autoregressive
methods are applied to forecasting problems, as is often the case (e.g., when using Machine Learning methods), the
aforementioned problems of CV are largely irrelevant, and CV can and should be used without modification, as in the
independent case. To the best of our knowledge, this is the first paper to justify the use of the standard K -fold CV in the
dependent settingwithoutmodification. Our paper draws the line of applicability of the procedure betweenmodels that have
uncorrelated errors, and models that are heavily misspecified and thereby do not produce uncorrelated errors. In practice,
this means that the method can be used without problems to detect overfitting, as overfitted models have uncorrelated
errors. Underfitting should be tackled beforehand, e.g. by testing residuals for serial correlation. We provide a theoretical
proof and additional results of simulation experiments and a real-world example to justify our argument.

2. Cross-validation for the dependent case

Cross-validation for the dependent setting has been studied extensively in the literature, including Györfi et al. (1989),
Burman and Nolan (1992) and Burman et al. (1994). Let y = {y1, . . . , yn} be a time series. Traditionally, when K -fold CV is
performed, K randomly chosen numbers out of the vector y are removed. This removal invalidates the CV in the dependent
setting because of the correlation between errors in the training and test sets. Therefore, Burman and Nolan (1992) suggest
bias correction, whereas Burman et al. (1994) propose h-block CV whereby the h observations preceding and following the
observation are left out in the test set. We call this procedure non-dependent cross-validation, as it leaves out the possibly
dependent observations and only considers data points that can be considered to be independent.

However, both bias correction and the h-block CVmethod have their limitations including inefficient use of the available
data.

Let us now consider a purely autoregressive model of order p

yt = g(xt , θ) + εt , (1)

where εt is a shock or disturbance term, θ is a parameter vector, xt ∈ Rp consists of lagged values of yt and g (xt , θ) =

Eθ [yt |xt ]. Here g (·) could be a linear or nonlinear function, or even a nonparametric function. Thus, g(·) could be a totally
unspecified function of the lagged values of yt up to pth order.

Here, the lag order of the model is fixed and the time series is embedded accordingly, generating a matrix that is then
used as the input for a (nonparametric, nonlinear) regression algorithm. The embedded time series with order p and a fixed
forecast horizon of h = 1 is defined as follows:⎡⎢⎢⎢⎢⎢⎣

y1 y2 . . . yp yp+1
...

...
...

...
...

yt−p yt−p+1 · · · yt−1 yt
...

...
...

...
...

yn−p yn−p+1 . . . yn−1 yn

⎤⎥⎥⎥⎥⎥⎦ . (2)

Thus each row is of the form [x′
t , yt ], and the first p columns of thematrix contain predictors for the last column of thematrix.

Recall the usual K -fold CVmethod, where the training data is partitioned into K separate sets, say J = {J1, . . . , JK }. Define
Jk− = ∪j̸=kJj, so that for a particular evaluation k in the cross-validation, Jk is used as test set, and the remaining sets combined,
Jk− , are used for model fitting. Instead of reducing the training set by removing the h observations preceding and following
the observation yt of the test set, we leave out the entire set of rows corresponding to t ∈ Jk in matrix (2). Fig. 1 illustrates
the procedure.

Provided (1) is true, the rows of the matrix (2) are conditionally uncorrelated because yt − ĝ(xt , θ̂) = ε̂t is simply
a regression error, and {ε̂t} are asymptotically independent and identically distributed (i.i.d.) provided g is estimated
appropriately. Consequently, omitting rows of the matrix will not affect the bias or consistency of the estimates.

In practice, although we do not know the correct p and other hyper-parameters of the model, if our model is sufficiently
large and flexible (and therefore liable to be overfitted), errors will be uncorrelated. In the case of correlated errors, the CV
procedure will be biased, but this can be relatively easily tackled by testing the residuals for serial correlation.

It is worth mentioning that this method leaves the entire row related to the chosen test set out instead of test set
components only. As a result, we lose much less information embedded in the data in this way than in the h-block CV.

3. The theoretical result

Let y1, . . . , yn be the observations from a stationary process where each yt has distribution P on R. We consider pure
AR(p) models in order to discuss the validity of our method. Without loss of generality and for ease of notation, we focus on
the leave-one-out CV because generalization to the K -fold CV is straightforward.
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