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a b s t r a c t

We consider the estimation problem of conditional quantile when multi-dimensional
covariates are involved. To overcome the ‘‘curse of dimensionality’’ yet retain model
flexibility, we propose two partially linearmodels for conditional quantiles: partially linear
single-indexmodels (QPLSIM) and partially linear additivemodels (QPLAM). The unknown
univariate functions are estimated by penalized splines. An approximate iteratively
reweighted penalized least square algorithm is developed. To facilitatemodel comparisons,
we develop effective model degrees of freedom for penalized spline conditional quantiles.
Two smoothing parameter selection criteria, Generalized Approximate Cross-validation
(GACV) and Schwartz-type Information Criterion (SIC) are studied. Some asymptotic
properties are established. Finite sample properties are investigated through simulation
studies. Application to the Boston Housing data demonstrates the success of the proposed
approach. Both simulations and real applications show encouraging results of the proposed
estimators.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction 1

This study is motivated by analyzing the well-known Boston Housing data. The dataset contains 506 observations of 2

the median price of owner-occupied homes together with 13 variables which may affect the median housing prices. The 3

response variable and many covariates are left-skewed. Hence, quantile regression or conditional quantile (see the seminal 4

work Koenker and Bassett, 1978) can be naturally used to examine this data (e.g., Chaudhuri 1997; De Gooijer and Zerom, 5

2003; Yu and Lu, 2004; Wu et al., 2010; and Kong and Xia, 2012). Q2 6

Let Y be the response variable and (X, Z) be the covariate vector. This paper proposes two alternative partially linearmod- 7

els for conditional quantiles: partially linear single-index models (QPLSIM) and partially linear additive models (QPLAM). 8

Both approaches attempt to overcome the well-known ‘‘curse of dimensionality’’ of fully nonparametric model (Chaudhuri, 9

1991a,b) yet retain model flexibility. Q3 10

✩ This manuscript is based in part on the Ph.D. Thesis of the first author at the University of Cincinnati. Part of this paper has been formerly circulated
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The partially linear single-index models for conditional quantiles take the form1

qτ (Y |X, Z) = g(Xα)+ Zβ. (1)2

QPLSIM has two components: the linear combination Xα which is often termed as single-index enters the model via3

a univariate nonparametric link function g(·) and Zβ enters the model as a partially linear term. By reducing the4

dimensionality from that of a general covariate vector X to a univariate single-index Xα, QPLSIM avoids the so-called ‘‘curse5

of dimensionality’’. Partially linear term also enjoys easier interpretation of the effect of each variable. It is worth noting6

that when the univariate link function g(·) is monotonic, the single-index coefficient α of model (1) retains similar ease-of-7

interpretation as that in the linear quantile regression while allowing for curvature through the univariate nonparametric8

link function.9

Model (1) is quite flexible to include single-index models and partially linear models as special cases. When there is no10

partially linear term Zβ, model (1) reduces to the single-index quantile models (Wu et al., 2010). Based on their estimation,11

Kong and Xia (2012) investigated the Bahadur representation of single-index parameter estimators. Both papers adopt12

local linear methods to estimate the univariate link function g(·). Chaudhuri et al. (1997) proposed the average derivative13

approach, where the single-index coefficient is estimated by taking an expectation of the vector of partial derivatives of14

the conditional quantile with respect to the covariates. Since this approach requires multivariate kernel regression, it is less15

appealing in practice with high-dimensional covariates. In fact, when the single-index coefficient is known or the covariate16

X is univariate, model (1) reduces to partially linearmodels. For example, He and Liang (2000) studied partially linear errors-17

in-variables quantilemodels. Chen and Khan (2001) studied partially linear censored quantile regression. Lee (2003) studied18

the efficient estimator for partially linear terms. Most recently, Härdle et al. (2012) studied the bootstrap approximation for19

the uniform confidence band.20

The second approach we propose is partially linear additive models for quantile regression (QPLAM)21

qτ (Y |X, Z) = a + g1(X1)+ · · · + gd(Xd)+ Zβ, (2)22

which include additive models and partially linear models as special cases. Additive models are popular for dimension23

reduction which replace the linear component by a sum of univariate nonparametric functions over the components of24

X; see e.g. De Gooijer and Zerom (2003) on kernel based marginal integration, Yu and Lu (2004) on local linear smoothing,25

Horowitz and Lee (2005) on two-stage estimator for quantile regression.26

Note that, QPLAM model (2) reduces dimensionality nicely but does not incorporate interactions of X in the current27

structure. QPLSIM model (1) applies a nonlinear link function to the index Xα, hence some interactions between the28

covariates can be modeled. Computationally QPLSIM are more complex partly due to this nonlinear structure on index29

parameters where nonlinear optimization has to be involved. In this study, we find that both approaches are appealing30

alternatives for dimension reduction on conditional quantile regression.31

We estimate the nonparametric functions in models (1) and (2) using penalized splines (P-splines). Penalized splines32

have gained increasing popularity, especially due to the computational expediency and easy-adaptability to more complex33

models (see Ruppert et al., 2003 for a review). Yu and Ruppert (2002) show that penalized spline estimation for partially34

linear single-index models in mean regression is computationally stable and expedient, while the local method estimation35

may become computationally unstable (Carroll et al., 1997). To the best of our knowledge, this is the first work to adopt the36

penalized spline estimation for single-index quantile regression.37

Furthermore, we study the effective degrees of freedom in P-splines quantile regression models and investigate the38

smoothing parameter selection in detail. First, to facilitate model comparisons, we develop the measure for effective model39

degrees of freedom for the QPLSIM and QPLAM via an approximate iteratively reweighted least square algorithm. The main40

idea of our algorithm is centered on minimizing a check function along with a roughness penalty for models (1) and (2),41

where the check function is approximated by a differentiable function near a small neighborhood of the origin. This idea can42

be traced back to Nychka et al. (1995) and has also been adopted in Yuan (2006) and Li et al. (2007) in different modeling43

contexts. Second, we study in simulations two smoothing parameter selection criteria, Generalized Approximate Cross-44

validation (GACV) and Schwarz-type information criterion (SIC).45

Incorporating model degrees of freedom, we compare model goodness-of-fit for a variety of conditional quantile models46

with Boston Housing data. The findings are interesting. Among the single-index models, QPLSIMmodels outperform single-47

index models without partially linear terms. Similar results are observed in the additive models. Both observations suggest48

that incorporating model degrees of freedom, partially linear terms are useful to include in modeling conditional quantiles.49

Among the two partially linear models, QPLSIM and QPLAM are comparable in terms of model goodness-of-fit (see Tables 650

and 7). Finally, simulation studies with various error distributions show P-splines estimator for QPLSIM performs well.51

Simulations with identical design as De Gooijer and Zerom (2003) and Horowitz and Lee (2005) show the superiority of52

P-splines estimator to the existing additive quantile estimators (see Table 3).53

The rest of the paper is organized as follows. Section 2 describes the P-spline estimation for the partially linear single-54

index models (QPLSIM), establishes some asymptotic properties of the proposed estimators and presents the simulation55

results. Section 3 provides the study of the partially linear additive conditional quantile models (QPLAM). Section 4 presents56

an application to the Boston Housing data. Section 5 concludes the paper and discusses the link of our work to the research57

area of functional data analysis. Technical proofs are relegated to the Appendix.58
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