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a b s t r a c t

Mixture model-based methods assuming independence may not be valid for clustering
growth trajectories arising from multilevel studies because longitudinal data collected
from the same unit are often correlated. Amixture of mixed effects models is considered to
capture the correlation usingmultilevel andmultivariate random effects. Furthermore, the
mixing proportions are allowed to depend on covariates. The additional information is thus
incorporated into the mixture model to adjust for individual probabilities of membership
of the components. The proposedmethod is illustrated using simulated and real multilevel
growth trajectory data sets from various scientific fields.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Mixture model-based clustering methods implemented via the EM algorithm are being commonly used in a wide range
of applications in the cluster analysis ofmultivariate data (McLachlan et al., 2004;McLachlan and Peel, 2000; Ng et al., 2012).
With this approach to clustering, a common assumption is to take all the observations on the entities to be independent of
one another.We letY1, . . . , Yn denote a random sample of size nwhereYj is a p-dimensional randomvectorwith probability
density function beingmodeled as amixture of g multivariate normal component densitiesφ(yj;ψh), whereψh is the vector
of unknown parameters in the hth component density (h = 1, . . . , g). The independence assumption implies that the
likelihood function can be expressed as

L(9) =

n
j=1

g
h=1

πh(xj;α)φ(yj;ψh), (1)

where 9 is the vector containing all the unknown parameters in the mixture model and the mixing proportions πh(xj;α)
depend on a vector of covariates xj associated with the response yj, and where α contains the unknown parameters in the
mixing proportions. For many applied problems in the context of social, medical, and health sciences, the data collected
could exhibit a hierarchical or multilevel structure (Ng and McLachlan, 2007; Ng et al., 2004). Data collected from the same
unit (such as hospital) are correlated and the independence assumption for cluster analysis is no longer valid. Ignoring the
interdependence between hierarchical or multilevel data can result in overlooking the importance of certain unit-specific
effects and lead to spurious or misleading clustering results (Goldstein, 2010; Ng and McLachlan, 2007).

In clustering growth trajectories, growthmixturemodels (Muthén, 2004;Muthén andAsparouhov, 2009;Vermunt, 2007)
and mixture latent growth models (Vermunt, 2003, 2007) have been adopted to identify different classes of trajectory
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patterns and predictors of membership in these classes. The growthmixturemodels extend the conventional growthmodel
(Raudenbush and Bryk, 2002) and the latent class growth analysis (LCGA) approach (Nagin and Land, 1993) to allow the
presence of different clusters of trajectory patterns and heterogeneity in individual trajectories that vary around the mean
trajectory within a cluster. The growth mixture models are thus flexible to model individual growth trajectories from
unobserved subpopulations (latent trajectory clusters) with individual variation in growth parameters that are captured
by random effects.

The use of random-effectsmodeling in amixture framework has been considered in another topic concerning the analysis
of gene expression data with repeated measurements (Celeux et al., 2005; Grün et al., 2012; Ng et al., 2006), where the
major aim is to reveal groups of genes with similar profiles that may be related to the same underlying biological process
or molecular pathway (McLachlan et al., 2004). Besides the difference in aims, another distinct feature of this type of
applications is that no covariate risk factor is usually available for the clustering of genes. This implies that πh(xj;α) = πh in
(1), which is the prior probability that the jth gene belongs to the hth component given observed gene expression profile yj.
Extended from amultivariate Gaussianmixturemodel (McLachlan and Peel, 2000), Celeux et al. (2005) considered amixture
of linear mixed-effects models (LMMs) with a single random effects term to account for the correlation between repeated
measurements at time t for each gene. Specifically, the unconditional distribution of all yj that arise from the hth component
is given by

yh
∼ Nnh×r(Wβh, θhUU

T
+ σ 2

h I), (2)

where βh is the fixed effect vector for the hth component, θh is the random effect variance, σ 2
h is the residual variance, W

and U are design matrices for the corresponding fixed and gene-specific random effects (Celeux et al., 2005). In (2), nh and
r are, respectively, the number of genes belonging to the hth cluster and the number of repeated measurements for each
tissue sample, I is an identify matrix, and the superscript T represents vector transpose. Ng et al. (2006), on the other hand,
considered a mixture of LMMs with two random effects terms to separately account for the correlation between repeated
measurements and within tissue samples, respectively. As the tissue-specific random effects induce dependency among
the expression values of genes from the same component and from the same tissue, their model can handle correlated
gene-expression profiles without the requirement of independence assumption for the genes as with other methods. More
recently, Grün et al. (2012) considered a mixture of linear additive models (LAMs) for the clustering of time-course gene
expression data, where random effects on individual genes are incorporated in the component densities and estimated
using regularized likelihood approaches. In contrast to the mixture of LMMs, the mixture of LAMs assume that the repeated
observations for the same gene are independent given the component membership (Grün et al., 2012).

In this paper, we extend earlier work of Ng et al. (2006) aforementioned by incorporating a bi-level multivariate random
effects structurewithin themixturemodels framework and allowing themixing proportions to depend on covariate risk fac-
tors. We wish to focus on the applications of this newmixture of mixed effects models for clustering multilevel growth tra-
jectories that are obtained fromhierarchical units such that their trajectories are correlatedwithin a unit. The random-effects
modeling approach proposed in this paper is thus different from those considered for the analysis of gene expression data
(Celeux et al., 2005; Grün et al., 2012; Ng et al., 2006), where only individual-level random effects are adopted.

In contrast to the existing growthmixturemodel approaches, ourmethod does not require the independence assumption
for individual trajectories, which will not hold in practice for data with hierarchical or multilevel structure. Moreover,
the proposed model allows bi-level multivariate random effects for capturing the variation among higher level study
units and the individual level variation, respectively. Furthermore, the second extension facilitates the provision of a
better clustering result where there exists additional information on an individual’s risk factors that have an impact on
membership of subpopulations. The extensions thus create a wider applicability of mixture model-based approaches for
clustering hierarchically structured trajectory data. Simulated multilevel data and a real example will be given to illustrate
the proposed method.

2. Mixtures of random effects models

With a bi-level hierarchical data structure, it is assumed that there are M higher level units, and within each unit there
are ni study subjects (i = 1, . . . ,M). Thus, the total number of participants is n =

M
i=1 ni. The objectives are to identify

the subpopulation structure within the participants and the risk factors that have impact on the trajectory patterns of an
outcome measure. We denote yij the observed p-dimensional trajectory for the jth individual in the ith unit and xij a vector
of risk factors associated with Yij.

In this paper, we formulate a LMM (McCulloch and Searle, 2001) for the mixture components in which covariance infor-
mation can be incorporated into the clustering process. Specifically, it is assumed that the effects imposed by the higher level
units are random and shared among participants collected from the same unit. In addition, random effects are introduced
to capture individual variation in trajectories that vary around the mean trajectory within a unit at various time periods s,
where s ≤ p. Let bhi = (bhi1, . . . , bhip)T and chij = (chij1, . . . , chijs)T the unobserved unit-specific and individual-specific
random effects, respectively. This bi-level random-effects modeling is in contrast to that considered in Ng et al. (2006)
with individual-specific random effects only. With reference to the mixture framework of multivariate normal component
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