
Computer Languages, Systems & Structures 54 (2018) 20–38

Contents lists available at ScienceDirect

Computer Languages, Systems & Structures

journal homepage: www.elsevier.com/locate/cl

Using the local context for the definition and implementation

of visual languages

Gennaro Costagliola, Mattia De Rosa

∗, Vittorio Fuccella

Department of Informatics, University of Salerno, Via Giovanni Paolo II, Fisciano 84084, SA, Italy

a r t i c l e i n f o

Article history:

Received 13 February 2018

Revised 28 March 2018

Accepted 3 April 2018

Available online 12 April 2018

Keywords:

Local context

Visual languages

a b s t r a c t

In general, visual languages need to be simple in order to be easily used and understood.

As a result, many of them have simple constructs that can be defined by simply describ-

ing local constraints on the constituent elements. Based on this assumption, in a previous

research, we developed a local context methodology for the specification of the syntax

of simple visual languages such as flowcharts, entity-relationship diagrams, use-case dia-

grams. In this paper, we extend the methodology by defining a new technique for a local

context based semantic translation of a visual language. The technique uses XPath-like ex-

pressions, called SGPath, together with a data flow model of execution. As for the case of

local syntax checks, attributes and rules to calculate them are defined for each element of

the language. For a given element in the abstract sentence graph, the SGPath expressions

are used to gather values from its neighbors in order to allow the rules to calculate its

semantic attributes. The new methodology has been implemented in the tool LoCoMoTiVe

and been tested on visual languages such as entity-relationship diagrams, flowcharts, trees.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Since their introduction, visual languages have been defined as part of systems which enhance communication by the

use of visual elements. Diagrams, maps, images and pictures are examples of visual sentences and they are used as rep-

resentations of mental concepts that need spatial contexts in order to be described naturally. Their role is to facilitate the

communication among people since, when adequate, visual communication is more direct and of immediate understanding

compared to the verbal or text type of communication. Because of this, the use of visual languages can be found almost in

any context ranging from art to engineering.

It must be admitted, however, that badly designed visual languages can lead to visual formulations that are very difficult

to compose and interpret. In this case, they fail their main reason of being.

In general, from a syntactic point of view, this occurs when a language presents many syntactic rules binding elements

which can be very far in a sentence. As an example, in the case of textual programming languages, one might consider the

matching parenthesis in languages such as C or Java.

To overcome this problem, block visual languages such as Scratch have eliminated syntax dependencies between far

language elements, by adding shape information to each element and reducing the composition of a program to the creation

of a puzzle. The syntactic rule here is very simple: “a visual program is syntactically correct if and only if each tile well

∗ Corresponding author.

E-mail address: matderosa@unisa.it (M. De Rosa).

https://doi.org/10.1016/j.cl.2018.04.002

1477-8424/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.cl.2018.04.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2018.04.002&domain=pdf
mailto:matderosa@unisa.it
https://doi.org/10.1016/j.cl.2018.04.002

G. Costagliola et al. / Computer Languages, Systems & Structures 54 (2018) 20–38 21

interlocks with its neighbors”. In this case, the validity of the local shape constraints on each tile guarantees the correctness

of the whole visual program independently on how many elements it is made of.

This is also why block languages are now very popular and extensively used in education for teaching introductory

programming to non-experts, [1] .

In previous research, [2,3] , we have shown that not only block languages but also many other very well known and used

programming visual languages such as unstructured flowcharts, data flow languages and entity-relationship diagrams can

be syntactically specified by mostly setting local constraints on the language elements. This has allowed us to avoid writing

complex grammars for these types of languages by greatly simplifying the design of a visual language from a syntactic point

of view.

In particular, our methodology, known as local context-based visual language specification , only requires the language de-

signer to define the local context of each symbol of the language. The local context is seen as the interface that a symbol

exposes to the rest of the sentence and consists of a set of attributes defining the local constraints that need to be consid-

ered for the correct use of the symbol.

In this paper, we continue our previous work by facing the semantic translation of a visual language based on the local

context. We propose a method based on XPath-like expressions, called SGPath expressions, and a data flow model of execu-

tion in order to define the semantic translation rules for the language by specifying rules for each single language element

as opposed to defining semantic rules for complete phrases.

In particular, for a given node of the abstract syntax graph returned by the syntactic phase, the SGPath expressions are

exploited to gather values from its neighbors to be used in the translation. XPath-like languages have shown to be very

well-suited for navigation through graphs when querying data held in the nodes, [4] .

The new methodology has been implemented as part of the tool LoCoMoTiVe [3] and tested in two different case stud-

ies, aimed at generating code from two different visual languages: C-like code from flowcharts and SQL code from entity-

relationship diagrams.

The paper is organized as follows: the next section refers to the related work; Section 3 recalls the main concepts of

the local context specification of visual languages; Section 4 describes the SGPath specification; Section 5 describes the

local context-based semantic definition (LCDS) and its analysis algorithm; Section 6 describes the LoCoMoTiVE tool that

implements the methodology; finally Section 7 concludes the paper with final remarks and a brief discussion on future

work.

2. Related work

Several strategies to model diagrams as visual language sentences have been conceived in the past. Diagrams have been

represented either as sets of attributed symbols, with the “position” of the symbol in the sentence represented through

typed attributes (attribute-based approach) [5] , or as sets of relations on symbols (relation-based approach) [6] . Despite the

fact that the two approaches appear to be different, they both consider a visual sentence as a set of symbols and relations

among them. This structure can be represented as a spatial-relationship graph [7] built by adding a node for each graphical

symbol and adding an edge for each spatial relationship between symbols (nodes).

In the attribute-based approach, the relations are derived by matching attribute values, while in the relation-based ap-

proach the relations are explicitly named.

Based on these representations, various formalisms have been suggested to represent the visual language syntax, each

one associated to ad-hoc scanning and parsing techniques: (Extended) Positional Grammars [8] , Constrained Set Grammars

[9] , Relational Grammars [10] , Reserved Graph Grammars [11] to name some (other approaches and details can be found in

[12] and [13]). These visual grammars are defined, in general, by specifying an alphabet of graphical symbols together with

their “visual” appearance, a set of spatial or topological relationships, and a set of grammar rules, usually in a context-free

like format even though their descriptive power is mostly context sensitive.

Various software tools for visual language prototyping have been designed and implemented based on the different types

of visual grammar formalisms. These include: VLDesk that is based on positional grammars [14] , GenGed that is based on

Hypergrah grammars [15] , Penguin that is based on constraint logic based grammars [16] , DiaGen [17] that is based on

Hypergrah grammars, VisPro that is based on Reserved Graph Grammars [18] , AToM3 [19] , VL-Eli [20] and its improvement

DEViL [21] . Most of the systems include the possibility to add visual language semantics specifications but these are all

specified at the level of grammar productions (see [22] as an example). DEViL also provides an object-oriented like domain

specific language and a library of “visual patterns” that can be used to easily specify common concepts such as lists, sets,

tables, trees, etc. However, our work goes a step further by completely removing the grammar specification.

Even though context-free like rules are well known, visual grammars are usually difficult to define and read. This may

be the reason why there has been not much success for these techniques in real-world applications. Many visual languages

used today are syntactically simple languages that focus on the basic graphical elements and their expressive power, and

therefore they do not need complex grammar rules to be specified. Because of this, we feel that our methodology allows

a simpler specification for many of them, making it less demanding to define and quickly prototype visual languages with

their semantic translation.

Download English Version:

https://daneshyari.com/en/article/6870859

Download Persian Version:

https://daneshyari.com/article/6870859

Daneshyari.com

https://daneshyari.com/en/article/6870859
https://daneshyari.com/article/6870859
https://daneshyari.com

