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a b s t r a c t

A superstring of a set ofwords is a string that contains each inputword as a substring. Given
such a set, the Shortest Superstring Problem (SSP) asks for a superstring ofminimum length.
SSP is an important theoretical problem related to the Asymmetric Travelling Salesman
Problem, and also has practical applications in data compression and in bioinformatics.
Indeed, it models the question of assembling a genome from a set of sequencing reads.
Unfortunately, SSP is known to be NP-hard even on a binary alphabet and also hard
to approximate with respect to the superstring length or to the compression achieved
by the superstring. Even the variant in which all words share the same length r , called
r-SSP, is NP-hard whenever r > 2. Numerous involved approximation algorithms
achieve approximation ratio above 2 for the superstring, but remain difficult to implement
in practice. In contrast the greedy conjecture asked in 1988 whether a simple greedy
algorithm achieves ratio of 2 for SSP. Here, we present a novel approach to bound the
superstring approximation ratio with the compression ratio, which, when applied to the
greedy algorithm, shows a 2 approximation ratio for 3-SSP, and also that greedy achieves
ratios smaller than 2. This leads to a new version of the greedy conjecture.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the

CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Given a set of p words P := {s1, s2, . . . , sp} over a finite alphabet Σ , a superstring of P is a string containing each si for
1 ≤ i ≤ p as a substring. The Shortest Superstring Problem (SSP) asks for a superstring of P of minimal length. SSP is a
well studied problem (alias Shortest Common Superstring), with a strong relation to the Asymmetric Travelling Salesman
Problem, and is known to be NP-hard even on a binary alphabet [7]. The restriction to instances where all input strings share
the same length, say r > 1, is denoted r-SSP, becomes polynomial if r ≤ 2, but remains NP-hard as soon as the strings are of
length at least 3 [1]. Two approximationmeasures can be optimised for SSP: either the length of the superstring isminimised,
or the compression is maximised (i.e., the sum of the lengths of the input strings minus that of the superstring). For a word
x, |x| denotes the length of x. Let ∥P∥ denote


si∈P |si| and let t be the output superstring, then the compression equals

∥P∥ − |t|. With both measures SSP is hard to approximate (MAX-SNP-hard, see [1]). Since 1991, a long series of elaborated
algorithms have improved the approximation ratio for bothmeasures culminating in 2 11

23 for the superstring [13] and in 3/4
for the compression measure [14]. A recent table listing these ratio and the literature, as well as known inapproximability
bounds appears in [9]. A detailed survey gives an overview of the numerous application contexts of SSP [8].
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In 1988, a seminal paper introduced a simple greedy algorithm, consisting in repeatedly merging two words that exhibit
the largest (prefix–suffix) overlap until only one string remains [16]. With P := {abba, bbaa, aaba} for example, abba is
first merged with bbaa yielding abbaa (they share a 3-letter overlap), then, abbaa is merged with aaba resulting in the
superstring abbaaba of length 7; as ∥P∥ = 12, the compression obtained equals ∥P∥ − |t| = 12 − 7 = 5. Note that their
greedy algorithm, denoted by greedy, can be seen as the greedy algorithm of a specific hereditary system [4]. Tarhio and
Ukkonen proved in [16] that greedy achieves a compression ratio of 1/2 and formulated the greedy conjecture: the greedy
algorithm yields a superstring ratio of 2. Despite a lot of research dedicated to SSP, this conjecture has remained open since
1988. A weaker form of this conjecture asks to prove this ratio for r-SSP and some values of r . Blum et al. have shown for
greedy a superstring ratio of 4 [1], which was later improved to 3.5 in [10]. The greedy conjecture is supported by simulated
experiments [18,15]. Moreover, the superstring approximation ratio obtained by the greedy algorithm remains a crucial
question, especially since other approximation algorithms are usually less efficient than greedy [10].

Recently, it has been proven that in the casewhere all inputwords have length 4 (for 4-SSP) the greedy algorithmachieves
a superstring ratio of at most 2, as stated by the conjecture [11]. This proof is valid only for words of length 4 and cannot be
adapted to words of length 3, for instance. Kulikov and colleagues [11] suggest that the conjecture for 3-SSP follows from
the fact that greedy achieves 2-approximation of the compression measure, citing [16]. To our knowledge, no proof for the
greedy conjecture for words of length 3 has ever been published and there are no mention of it in a recent survey [8]. Here,
we study the relationship between the compression ratio and the superstring ratio of an approximation algorithm in general,
and derive a bound of the superstring ratio in function of the compression ratio. When applied to greedy on words of fixed
length (r-SSP), we obtain a superstring approximation ratio of 2 for 3-SSP, and this ratio increases with r to reach for r = 6
a value of 7/2, which is the best known ratio for the greedy algorithm [10]. But we also get a tight superstring ratio of 3/2
for 2-SSP, thereby demonstrating that the greedy algorithm can achieve a ratio strictly smaller than 2. This shows first that
the general relationship between the superstring and compressionmeasures is important and can serve for future research.
Second, the ratio smaller than 2 does not contradict known bounds or instances. Indeed, the known examples give a bound
that converges towards 2 from belowwhen the length of the input words tends to infinity. Thus, we propose a more precise
conjecture for r-SSP, in which the superstring ratio equals 2 −

1
r instead of 2.

Notation: An alphabet Σ is a finite set of letters. A linear word or string over Σ is a finite sequence of elements of Σ . The set
of all finite words over Σ is denoted by Σ⋆, and Σ r denotes the subset of Σ⋆ of words of length r for any positive integer r .
Given two words x and y, we denote by xy the concatenation of x and y.

2. Relation between maximum compression and shortest superstring approximation ratios for SSP

Here, we exhibit for SSP an upper bound of the superstring approximation ratio of an algorithm in function of its
compression ratio.

Let A be a polynomial-time approximation algorithm for SSP. As all approximation algorithms considered here take
polynomial time in the input size, we simply omit this characteristic in the sequel. We denote by sA(P) the output of
algorithm A with input P , and by sopt(P) an optimal superstring for this input. Note that sopt(P) also achieves a maximum
compression for P . We only consider approximation algorithms that return a superstring whose length is bounded by
∥P∥. In other words, we disregard algorithms that insert additional symbols beyond those required by the words of the
instance. Without this restriction, the approximation ratio super(A) would not be defined for any algorithm A, and the
ratio comp(A) could be negative; both ratios are defined a few lines below. Instances where the optimal superstring is the
concatenation of all the words of the instance satisfy |sopt(P)| = ∥P∥. In such cases, for any approximation algorithm A,
one has ∥P∥ = |sopt(P)| = |sA(P)| = ∥P∥. Such instances are excluded from Theorem 1. Let us define the superstring
approximation ratio of algorithm A, denoted super(A), as the smallest real value such that for any input P:

1 ≤
|sA(P)|

|sopt(P)|
≤ super(A).

Similarly, we define the compression ratio comp(A) as the largest real value such that, for any input P satisfying ∥P∥ ≠

|sopt(P)|, we have

0 ≤ comp(A) ≤
∥P∥ − |sA(P)|

∥P∥ − |sopt(P)|
.

Instances where the optimal superstring is the concatenation of all the words of the instance satisfy |sopt(P)| = ∥P∥. In
such cases, for any approximation algorithm A one has ∥P∥ = |sopt(P)| = |sA(P)| = ∥P∥. Such instances are excluded from
Theorem 1.

Theorem 1. Let P be a set of words satisfying |sopt(P)| ≠ ∥P∥. Let γ be a real such that 0 < γ ≤
|sopt (P)|

∥P∥
, and let A be an

approximation algorithm for SSP. We have:

super(A) ≤
(γ − 1) × comp(A) + 1

γ
.
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