ARTICLE IN PRESS

Discrete Applied Mathematics [(]]] .

EL SEVIER

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Note On the spanning connectivity of tournaments

Bo Zhang, Weihua Yang*, Shurong Zhang

Department of Mathematics, Taiyuan University of Technology, Taiyuan 030024, China

ARTICLE INFO

Article history: Received 14 January 2017 Received in revised form 7 September 2017 Accepted 16 December 2017 Available online xxxx

Keywords: Hamiltonian path Connectivity Spanning connectivity Bypass Tournament

ABSTRACT

Let *D* be a digraph. A *k*-container of *D* between *u* and *v*, C(u, v), is a set of *k* internally disjoint paths between *u* and *v*. A *k*-container C(u, v) of *D* is a strong (resp. weak) k^* -container $(k \ge 2)$ if there is a set of *k* internally disjoint paths with the same direction (resp. with different directions allowed) between *u* and *v* and it contains all vertices of *D*. A digraph *D* is k^* -strongly (resp. k^* -weakly) connected if there exists a strong (resp. weak) k^* -container between any two distinct vertices for $k \ge 2$. Specially, we define *D* is 1*-connected if *D* is weakly Hamiltonian connected (a 1*-connected digraph is 1*-strongly and also 1*-weakly connected.) We define the strong (resp. weak) spanning connectivity of a digraph D, $\kappa_s^*(D)$ (resp. $\kappa_w^*(D)$), to be the largest integer *k* such that *D* is ω^* -strongly (resp. ω^* -weakly) connected for all $1 \le \omega \le k$. In this paper, we show that for $k \ge 0$, a (2k + 1)-strong tournament is $(k + 2)^*$ -weakly connected and that for $k \ge 2$, a 2k-strong tournament is k^* -strongly connected. Furthermore, we show that in a tournament with *n* vertices and irregularity $i(T) \le k$, if $n \ge 6t+5k(t \ge 2)$, then $\kappa_s^*(T) \ge t$ and if $n \ge 6t+5k-3$ $(t \ge 2)$, then $\kappa_w^*(T) \ge t + 1$.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

For terminology not explicitly introduced here, we refer to [2,5]. A digraph *D* consists of a set V(D) of vertices and a set A(D) of ordered pairs *xy* of distinct vertices called arcs, if *xy* is an arc of *D*, we say that *x* dominates *y*. If *A* and *B* are two subsets of V(D) and every vertex of *A* dominates each vertex of *B*, we say that *A* dominates *B*. A directed path *P* is a sequence of vertices v_1, v_2, \ldots, v_k in a digraph such that $v_i v_{i+1}$ is an arc for all $i = 1, 2, \ldots, k - 1$ (In this paper, all of the paths mean directed paths). The vertex v_1 is called the start of *P* and v_k is called the end of *P*. The length of *P* is the number of arcs on *P*. The vertices $v_2, v_3, \ldots, v_{k-1}$ are the internal vertices of *P*. Two paths are said to be internally disjoint if their internal vertices are distinct. If *x* and *y* are two vertices of *D* and *P* is a directed path from *x* to *y*, we say that *P* is an (x, y)-path. If $uv \in A(D)$ and *P* is a (u, v)-path of length $k \ge 2$, then *P* is called a *k*-bypass of uv.

A tournament *T* is a digraph such that each pair of vertices is joined by precisely one arc. A Hamiltonian path (resp. cycle) of a tournament *T* is a path (resp. cycle) including all vertices of *T*. A digraph *D* is *weakly Hamiltonian connected* if there exists a Hamiltonian path between any two given vertices of *D*. For a vertex set *X* of *T*, we define *T*[*X*] as the sub-tournament induced by *X*. The out-neighborhood $N_T^+(x)$ of a vertex *x* is the set of vertices dominated by *x*, and the in-neighborhood $N_T^-(x)$ is the set of vertices dominating *x*. We denote the out-degree and in-degree of vertex *x* by $d^+(x) = |N_T^+(x)|$ and $d^-(x) = |N_T^-(x)|$ respectively. We say that *T* is *k*-regular if for every vertex *x* of *T*, we have $d_T^+(x) = d_T^-(x) = k$. The *irregularity i*(*T*) of a tournament *T* is the maximum $|d^+(x) - d^-(x)|$ over all vertices *x* of *T*. Clearly, a tournament is regular if *i*(*T*) = 0. If *i*(*T*) \neq 0, *T* contains a vertex of out-degree at least $\frac{1}{2}(n-1)$ and a vertex of in-degree at least $\frac{1}{2}(n-1)$. Every vertex of *T* has out-degree at least $\frac{1}{2}(n-1-i(T))$.

https://doi.org/10.1016/j.dam.2017.12.024 0166-218X/© 2017 Elsevier B.V. All rights reserved.

^{*} Corresponding author. E-mail address: yangweihua@tyut.edu.cn (W. Yang).

ARTICLE IN PRESS

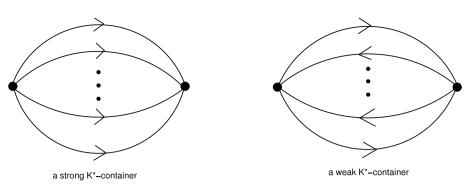


Fig. 1. Strong and weak k*-containers.

A digraph *D* is strongly connected (or just strong) if there exists an (x, y)-path and a (y, x)-path for any two vertices *x* and *y* of *D*. We say that *D* is *k*-strongly connected (or called *k*-strong) if it remains strongly connected after the removal of any set of fewer than *k* vertices. Connectedness is a fundamental notion in graph theory, and there are countless theorems which involve it. Perhaps the most important of these is Menger's theorem [13] (vertex-connectivity), which say that a digraph *D* is *k*-strongly connected (or called *k*-strong) if and only if for any two vertices *x* and *y* of *D*, it contains *k* internally disjoint paths from *x* to *y* and *k* internally disjoint paths from *y* to *x*.

When *T* is strong, *T* has a Hamiltonian cycle [3]. When *T* is not strong, let $T_1, T_2, ..., T_k$ be the strongly connected components. Without loss of generality, we may assume that whenever i < j, each vertex of T_i dominates each vertex of T_i . We refer to T_i as the *i*'th component of *T*, and to T_1 and T_k as the initial and terminal components respectively.

In an undirected graph *G*, a *k*-container of *G* between *u* and *v*, C(u, v), is a set of *k* internally disjoint paths between *u* and *v*. The concept of container is proposed by Hsu [4] to evaluate the performance of communication of an interconnection network. A *k*-container C(u, v) of *G* is a *k**-container if it contains all vertices of *G*. A graph *G* is *k**-connected if there exists a *k**-container between any two distinct vertices of *G*. The study of *k**-connected graphs is motivated by the globally 3*-connected graphs proposed by Albert et al. in [1]. Clearly, the spanning connectivity in graphs is also a generalization of Hamiltonian connectedness.

The related works about the spanning connectivity of graphs have appeared in some literatures. For examples, in [8], Lin et al. proved that the pancake graph P_n is w^* -connected for any w with $1 \le w \le n - 1$ if and only if $n \ne 3$. In [11], Lin et al. proposed a sufficient condition for a graph to be r^* -connected. They proved that for all nonadjacent vertices u and v in a graph G, if $d_G(u)+d_G(v) \ge |V|+k$, G is r^* -connected for every $r \in \{1, 2, ..., k+2\}$ (k is a positive integer). The spanning connectivity of graphs and the spanning fan-connectivity of graphs are discussed in [9,12], respectively. The spanning connectivity for the line graphs and the power of a graph are proposed in [7,14], respectively. Recently, the spanning connectivity for the arrangement graphs is proposed in [15]. Some extensive properties of the spanning connectivity are discussed in [6,10,17].

We explore to introduce the spanning connectivity in digraphs. Thomassen [16] studied weak Hamiltonian connectedness and strong Hamiltonian connectedness of tournaments. In this article, we define the spanning connectivity in digraphs to generalize the weak Hamiltonian connectedness.

Let *D* be a digraph. A *k*-container of *D* between *u* and *v*, C(u, v), is a set of *k* internally disjoint paths between *u* and *v*. A *k*-container C(u, v) of *D* is a strong (resp. weak) k^* -container $(k \ge 2)$ if there is a set of *k* internally disjoint paths with the same direction (resp. with different directions allowed) between *u* and *v* and it contains all vertices of *D* (we do not care about whether it is going from *u* to *v*, or *v* to *u*), as is shown in Fig. 1. A digraph *D* is k^* -strongly (resp. k^* -weakly) connected if there exists a strong (resp. weak) k^* -container between any two distinct vertices for $k \ge 2$. Specially, we define *D* is 1^{*}-connected if *D* is weakly Hamiltonian connected (a 1^{*}-connected digraph is 1^{*}-strongly, and also 1^{*}-weakly connected). We define the strong (resp. weak) spanning connectivity of a digraph *D*, $\kappa_s^*(D)$ (resp. $\kappa_w^*(D)$), to be the largest integer *k* such that *D* is ω^* -strongly (resp. ω^* -weakly) connected for all $1 \le \omega \le k$.

Based on the works of Thomassen, one naturally considers the following problem: Find the minimum f(k) such that a f(k)-strongly connected tournament is k^* -strongly (or k^* -weakly) connected.

We prove that for $k \ge 1$, a 2*k*-strong tournament which has at least one path of length 2 between any two vertices *x* and *y* is $(k + 2)^*$ -weakly connected, and that for $k \ge 0$, a (2k + 1)-strong tournament is $(k + 2)^*$ -weakly connected. Further, for $k \ge 2$, we prove that a 2*k*-strong tournament is k^* -strongly connected, and that a (2k + 1)-strong tournament which has at least one 2-bypass for each arc is $(k + 1)^*$ -strongly connected. Finally, we also prove that in a tournament with *n* vertices and irregularity $i(T) \le k$, if $n \ge 6t + 5k$ ($t \ge 2$), then $\kappa_s^*(T) \ge t$ and that in a tournament with *n* vertices and irregularity $i(T) \le k$, if $n \ge 6t + 5k - 3$ ($t \ge 2$), then $\kappa_w^*(T) \ge t + 1$.

2. Preliminary

The following is easy to obtain.

Download English Version:

https://daneshyari.com/en/article/6871387

Download Persian Version:

https://daneshyari.com/article/6871387

Daneshyari.com