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1. Introduction

Rotor-routing is a deterministic process that induces a walk of a chip on a directed graph. It was introduced in the physics
literature as a model of self-organized criticality [ 12,13,4]. The rotor walk can also be thought of as a derandomized random
walk on a graph [7].

In this paper, we explore the relationship of rotor-routing with the chip-firing game, and the Picard group of the graph.
We analyze a generalized version of rotor-routing, where each vertex has an integer number of chips, which might also
be negative. This model has sometimes been called the height-arrow model [3]. Rotor-routing in this setting becomes a
one-player game analogous to chip-firing, where a vertex can make a step if it has a positive number of chips.

In Section 2, we characterize recurrent elements for the rotor-routing game. This result is a generalization of a result of
Holroyd et al. [6] that characterizes recurrent configurations with one chip. A motivation for such a characterization is the
fact that for the chip-firing game, no characterization is known for the recurrent elements on general digraphs.

In Section 3, we define the analogue of the notion of linear equivalence of the chip-firing game for the rotor-routing
game. We show that the linear equivalence notions of the two models are related in a simple way. Moreover, whether two
configurations of the rotor-routing game are linearly equivalent can be decided in polynomial time.

We use this result to prove polynomial time decidability of the reachability problem for rotor-routing in a special case.
In particular, we show, that it can be decided in polynomial time whether two unicycles lie in the same rotor-router orbit.
Using the relationship between linear equivalence for chip-firing and for rotor-routing, we give a simple bijective proof for
the fact that the number of rotor-router unicycle orbits equals the order of the Picard group of the graph. (This fact also
follows from a combination of previous results [ 11, Theorem 1] and [5, Theorem 2.10], but they do not provide a bijection.)
Finally, we show, that the rotor-router action of the Picard group on the set of spanning in-arborescences [6] can also be
interpreted in terms of the linear equivalence. Using this interpretation, we show that it can be checked in polynomial time,
whether a given spanning in-arborescence is the image of another given arborescence by a given element of the Picard group.
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Also using this interpretation, we give a simpler proof for the result of Chan et al. [2] stating that the rotor-router action is
independent of the base point if and only if all cycles in the graph are reversible.

1.1. Basic notations

Throughout this paper, digraph means a directed graph, where multiple edges are allowed, but there are no loops. We
will almost always assume our digraphs to be strongly connected. For a digraph G, V(G) denotes the set of vertices, and E(G)
denotes the set of edges. For a directed edge v, u is the tail, and v is the head. The multiplicity of the edge v is denoted by
d(u, v). We denote the set of out-neighbors (in-neighbors) of a vertex v by I" " (v) (I" ~(v)), the out-degree (in-degree) of a
vertex v by d*(v) (d~(v)).

For a digraph G and vertex w € V(G) a spanning in-arborescence of G rooted at w is a subdigraph G’ such that dg,(v) =1
for each v € V(G) — w, and the underlying undirected graph of G’ is a tree.

We denote by Z"(® the set of integer vectors indexed by the vertices of a digraph G. We identify vectors in Z"(©) with
integer valued functions on V(G). According to this, we write z(v) for the coordinate corresponding to vertex v ofaz e ZV(®,
We denote by z > 0 if a vector z € ZY(® is coordinatewise nonnegative. We use the notation O¢ (1¢) for the vector where
each coordinate equals zero (one). We denote the characteristic vector of a vertex v by 1,.

Definition 1.1. The Laplacian matrix of a digraph G is the following matrix Lg € Z"(©*V(©;
—d*(u) ifu=v,
Le(u, v) = {d(v, u) ifu v,

Proposition 1.2 ([1, Proposition 4.1 and 3.1]). For a strongly connected digraph G, there exists a unique vector per. € ZV(®) such
that Lgper; = Og, the entries of per are strictly positive, and relatively prime. If G is Eulerian, then per; = 1g.

The vector perg is called the primitive period vector of G.
1.2. Chip-firing

Chip-firing is a solitary game on a directed graph. The configurations of the game are called divisors. A divisor x is an
integer vector indexed by the vertices of the graph, i.e. x € ZV(<), We think of x(v) as the number of chips on vertex v (which
might be negative). The degree of a divisor is the sum of its entries: deg(x) = Zvev(c)x(v). We denote the set of divisors on a
digraph G by Div(G), and the set of divisors of degree k by Div¥(G). Note that Div(G) and Div®(G) are Abelian groups with the
coordinatewise addition.

The basic operation in the game is a firing of a vertex. For a divisor x, firing a vertex v means taking the new divisor
x = x + Lg1,, i.e, v loses d*(v) chips, and each out-neighbor u of v receives d(v, u) chips. Note that a firing preserves the
degree of the divisor.

The firing of a vertex v is legal with respect to the divisor x, if x(v) > d*(v), i.e, if the vertex v has a nonnegative number of
chips after the firing. (Note that other vertices might have a negative number of chips.) A legal game is a sequence of divisors
in which each divisor is obtained from the previous one by a legal firing.

The following equivalence relation on Div(G), called linear equivalence, plays an important role in the theory of chip-
firing: x ~ y if there exists an integer vector z € Z"(® such that y = x + L¢z. One can easily check that this is indeed an
equivalence relation. As pery; is a strictly positive eigenvector of L; with eigenvalue zero, we can suppose that z > 0: We
have Lg(z + k - per¢) = L¢z for any k € Z, and for a sufficiently large k, z 4 k - per; > 0. Thus x ~ y if and only if y can be
reached from x by a sequence of (not necessarily legal) firings.

Note that the divisors linearly equivalent to 0¢ form a subgroup of Div’(G) which is isomorphic to Im(L¢), the image of
the linear operator on Z"(® corresponding to L¢. The factor group of Div®(G) by linear equivalence is called the Picard-group
of the graph:

Pic®(G) = DivO(G) /Im(L¢) .

1.3. Rotor-routing

The rotor-routing game is played on a ribbon digraph. A ribbon digraph is a digraph together with a fixed cyclic ordering
of the outgoing edges from v for each vertex v. For an edge e = v, denote by e* the edge following e in the cyclic order at
v. From this point, we always assume that our digraphs have a ribbon digraph structure.

Let G be a ribbon digraph. A rotor configuration on G is a function o that assigns to each non-sink vertex v an out-edge
with tail v. We call g(v) the rotor at v. For a rotor configuration o, we call the subgraph with edge set {o(v) : v € V(G)} the
rotor subgraph.

A configuration of the rotor-routing game is a pair (x, ¢), where x € Div(G) is divisor, and g is a rotor configuration on G.
We also call such pairs divisor-and-rotor configuration, or just shortly DRC.
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