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a b s t r a c t

We define the analogue of linear equivalence of graph divisors for the rotor-router model,
and use it to prove polynomial time computability of some problems related to rotor-
routing. Using the connection between linear equivalence for chip-firing and for rotor-
routing, we give a simple proof for the fact that the number of rotor-router unicycle-orbits
equals the order of the Picard group.We also show that the rotor-router action of the Picard
group on the set of spanning in-arborescences can be interpreted in terms of the linear
equivalence.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Rotor-routing is a deterministic process that induces a walk of a chip on a directed graph. It was introduced in the physics
literature as a model of self-organized criticality [12,13,4]. The rotor walk can also be thought of as a derandomized random
walk on a graph [7].

In this paper, we explore the relationship of rotor-routing with the chip-firing game, and the Picard group of the graph.
We analyze a generalized version of rotor-routing, where each vertex has an integer number of chips, which might also
be negative. This model has sometimes been called the height-arrow model [3]. Rotor-routing in this setting becomes a
one-player game analogous to chip-firing, where a vertex can make a step if it has a positive number of chips.

In Section 2, we characterize recurrent elements for the rotor-routing game. This result is a generalization of a result of
Holroyd et al. [6] that characterizes recurrent configurations with one chip. A motivation for such a characterization is the
fact that for the chip-firing game, no characterization is known for the recurrent elements on general digraphs.

In Section 3, we define the analogue of the notion of linear equivalence of the chip-firing game for the rotor-routing
game. We show that the linear equivalence notions of the two models are related in a simple way. Moreover, whether two
configurations of the rotor-routing game are linearly equivalent can be decided in polynomial time.

We use this result to prove polynomial time decidability of the reachability problem for rotor-routing in a special case.
In particular, we show, that it can be decided in polynomial time whether two unicycles lie in the same rotor-router orbit.
Using the relationship between linear equivalence for chip-firing and for rotor-routing, we give a simple bijective proof for
the fact that the number of rotor-router unicycle orbits equals the order of the Picard group of the graph. (This fact also
follows from a combination of previous results [11, Theorem 1] and [5, Theorem 2.10], but they do not provide a bijection.)
Finally, we show, that the rotor-router action of the Picard group on the set of spanning in-arborescences [6] can also be
interpreted in terms of the linear equivalence. Using this interpretation, we show that it can be checked in polynomial time,
whether a given spanning in-arborescence is the image of another given arborescence by a given element of the Picard group.
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Also using this interpretation, we give a simpler proof for the result of Chan et al. [2] stating that the rotor-router action is
independent of the base point if and only if all cycles in the graph are reversible.

1.1. Basic notations

Throughout this paper, digraph means a directed graph, where multiple edges are allowed, but there are no loops. We
will almost always assume our digraphs to be strongly connected. For a digraph G, V (G) denotes the set of vertices, and E(G)
denotes the set of edges. For a directed edge−→uv , u is the tail, and v is the head. The multiplicity of the edge−→uv is denoted by
d(u, v). We denote the set of out-neighbors (in-neighbors) of a vertex v by Γ +(v) (Γ −(v)), the out-degree (in-degree) of a
vertex v by d+(v) (d−(v)).

For a digraph G and vertex w ∈ V (G) a spanning in-arborescence of G rooted at w is a subdigraph G′ such that d+G′ (v) = 1
for each v ∈ V (G)− w, and the underlying undirected graph of G′ is a tree.

We denote by ZV (G) the set of integer vectors indexed by the vertices of a digraph G. We identify vectors in ZV (G) with
integer valued functions on V (G). According to this, we write z(v) for the coordinate corresponding to vertex v of a z ∈ ZV (G).
We denote by z ≥ 0 if a vector z ∈ ZV (G) is coordinatewise nonnegative. We use the notation 0G (1G) for the vector where
each coordinate equals zero (one). We denote the characteristic vector of a vertex v by 1v .

Definition 1.1. The Laplacian matrix of a digraph G is the following matrix LG ∈ ZV (G)×V (G):

LG(u, v) =
{
−d+(u) if u = v,

d(v, u) if u ̸= v.

Proposition 1.2 ([1, Proposition 4.1 and 3.1]). For a strongly connected digraph G, there exists a unique vector perG ∈ ZV (G) such
that LGperG = 0G, the entries of perG are strictly positive, and relatively prime. If G is Eulerian, then perG = 1G.

The vector perG is called the primitive period vector of G.

1.2. Chip-firing

Chip-firing is a solitary game on a directed graph. The configurations of the game are called divisors. A divisor x is an
integer vector indexed by the vertices of the graph, i.e. x ∈ ZV (G). We think of x(v) as the number of chips on vertex v (which
might be negative). The degree of a divisor is the sum of its entries: deg(x) =

∑
v∈V (G)x(v). We denote the set of divisors on a

digraph G by Div(G), and the set of divisors of degree k by Divk(G). Note that Div(G) and Div0(G) are Abelian groups with the
coordinatewise addition.

The basic operation in the game is a firing of a vertex. For a divisor x, firing a vertex v means taking the new divisor
x′ = x + LG1v , i.e, v loses d+(v) chips, and each out-neighbor u of v receives d(v, u) chips. Note that a firing preserves the
degree of the divisor.

The firing of a vertex v is legalwith respect to the divisor x, if x(v) ≥ d+(v), i.e, if the vertex v has a nonnegative number of
chips after the firing. (Note that other vertices might have a negative number of chips.) A legal game is a sequence of divisors
in which each divisor is obtained from the previous one by a legal firing.

The following equivalence relation on Div(G), called linear equivalence, plays an important role in the theory of chip-
firing: x ∼ y if there exists an integer vector z ∈ ZV (G) such that y = x + LGz. One can easily check that this is indeed an
equivalence relation. As perG is a strictly positive eigenvector of LG with eigenvalue zero, we can suppose that z ≥ 0: We
have LG(z + k · perG) = LGz for any k ∈ Z, and for a sufficiently large k, z + k · perG ≥ 0. Thus x ∼ y if and only if y can be
reached from x by a sequence of (not necessarily legal) firings.

Note that the divisors linearly equivalent to 0G form a subgroup of Div0(G) which is isomorphic to Im(LG), the image of
the linear operator on ZV (G) corresponding to LG. The factor group of Div0(G) by linear equivalence is called the Picard-group
of the graph:

Pic0(G) = Div0(G) /Im(LG) .

1.3. Rotor-routing

The rotor-routing game is played on a ribbon digraph. A ribbon digraph is a digraph together with a fixed cyclic ordering
of the outgoing edges from v for each vertex v. For an edge e = −→vw, denote by e+ the edge following e in the cyclic order at
v. From this point, we always assume that our digraphs have a ribbon digraph structure.

Let G be a ribbon digraph. A rotor configuration on G is a function ϱ that assigns to each non-sink vertex v an out-edge
with tail v. We call ϱ(v) the rotor at v. For a rotor configuration ϱ, we call the subgraph with edge set {ϱ(v) : v ∈ V (G)} the
rotor subgraph.

A configuration of the rotor-routing game is a pair (x, ϱ), where x ∈ Div(G) is divisor, and ϱ is a rotor configuration on G.
We also call such pairs divisor-and-rotor configuration, or just shortly DRC.
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