On the bend number of circular-arc graphs as edge intersection graphs of paths on a grid

Liliana Alcón ${ }^{\text {a }}$, Flavia Bonomo ${ }^{\text {b,g,*, Guillermo Durán }}{ }^{\text {c,d,g }}$, Marisa Gutierrez ${ }^{\text {a,g }}$, María Pía Mazzoleni ${ }^{\mathrm{arg}}$, Bernard Ries ${ }^{\mathrm{e}}$, Mario Valencia-Pabon ${ }^{\mathrm{f}, 1}$
${ }^{\text {a }}$ Dto. de Matemática, FCE-UNLP, La Plata, Argentina
${ }^{\mathrm{b}}$ Dto. de Computación FCEN-UBA, Buenos Aires, Argentina
${ }^{\text {c }}$ Dto. de Matemática e Inst. de Cálculo FCEN-UBA, Buenos Aires, Argentina
${ }^{\text {d }}$ Dto. de Ingeniería Industrial, FCFM-Univ. de Chile, Santiago, Chile
${ }^{e}$ Université de Fribourg, DIUF, Fribourg, Switzerland
${ }^{\mathrm{f}}$ Université Paris-13, Sorbonne Paris Cité LIPN, CNRS UMR7030, Villetaneuse, France
${ }^{\mathrm{g}}$ CONICET, Argentina

ARTICLE INFO

Article history:

Received 29 May 2015
Received in revised form 9 August 2016
Accepted 16 August 2016
Available online xxxx

Dedicated to Martin Charles Golumbic on the occasion of his 65th birthday

Keywords:

Edge intersection graphs
Paths on a grid
Forbidden induced subgraphs
(normal, Helly) circular-arc graphs
Powers of cycles

Abstract

Golumbic, Lipshteyn and Stern [12] proved that every graph can be represented as the edge intersection graph of paths on a grid (EPG graph), i.e., one can associate with each vertex of the graph a nontrivial path on a rectangular grid such that two vertices are adjacent if and only if the corresponding paths share at least one edge of the grid. For a nonnegative integer k, B_{k}-EPG graphs are defined as EPG graphs admitting a model in which each path has at most k bends. Circular-arc graphs are intersection graphs of open arcs of a circle. It is easy to see that every circular-arc graph is a B_{4}-EPG graph, by embedding the circle into a rectangle of the grid. In this paper, we prove that circular-arc graphs are $B_{3}-E P G$, and that there exist circular-arc graphs which are not B_{2}-EPG. If we restrict ourselves to rectangular representations (i.e., the union of the paths used in the model is contained in the boundary of a rectangle of the grid), we obtain EPR (edge intersection of paths in a rectangle) representations. We may define B_{k}-EPR graphs, $k \geq 0$, the same way as B_{k} EPG graphs. Circular-arc graphs are clearly B_{4}-EPR graphs and we will show that there exist circular-arc graphs that are not B_{3}-EPR graphs. We also show that normal circulararc graphs are B_{2}-EPR graphs and that there exist normal circular-arc graphs that are not B_{1}-EPR graphs. Finally, we characterize B_{1}-EPR graphs by a family of minimal forbidden induced subgraphs, and show that they form a subclass of normal Helly circular-arc graphs.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Let g be a rectangular grid of size $(\ell+1) \times(\ell+1)$. The vertical grid lines will be referred to as columns and denoted by $x_{0}, x_{1}, \ldots, x_{\ell}$, and the horizontal grid lines will be referred to as rows and denoted by $y_{0}, y_{1}, \ldots, y_{\ell}$. A grid point lying on column x and row y is referred to as (x, y). A path on g is nontrivial if it contains at least one edge of the grid. Let \mathcal{P} be a

[^0]collection of nontrivial simple paths on \mathcal{G}. The edge intersection graph of \mathcal{P} (denoted by EPG (\mathscr{P})) is the graph whose vertices correspond to the paths of \mathcal{P} and two vertices are adjacent in $\operatorname{EPG}(\mathscr{P})$ if and only if the corresponding paths in \mathscr{P} share at least one edge in \mathscr{G}. A graph G is called an edge intersection graph of paths on a grid (EPG graph) if $G=E P G(\mathscr{P})$ for some \mathscr{P}. Every graph G satisfies $G=\operatorname{EPG}(\mathscr{P})$ for some \mathcal{P} on a large enough grid and allowing an arbitrary number of bends (turns on a grid point) for each path [12]. In recent years, the subclasses for which the number of bends of each path is bounded by some integer $k \geq 0$, known as $B_{k}-E P G$ graphs, were widely studied [2-4,8,12,14,15]. The bend number of a graph G (resp. a graph class \mathscr{H}), is the smallest integer $k \geq 0$ such that G (resp. every graph in \mathscr{H}) is a B_{k}-EPG graph. We denote by B_{k}-EPG, $k \geq 0$, the class of B_{k}-EPG graphs.

In [14], it was shown that for every integer $k \geq 0$ there exists a graph with bend number k, and that recognizing B_{1} EPG graphs is NP-complete. The bend number of classical graph classes was investigated as well. In [15], it was shown that outerplanar graphs are B_{2}-EPG graphs and that planar graphs are B_{4}-EPG graphs. For planar graphs, it is still an open question whether their bend number is equal to 3 or 4 . On the other hand, it is easy to see that B_{0}-EPG graphs exactly correspond to interval graphs (i.e., intersection graphs of intervals on a line) [12]. A generalization of interval graphs is circular-arc (CA) graphs, i.e., intersection graphs of open arcs on a circle. It is natural to see circular-arc graphs as EPG graphs by identifying the circle with a rectangle of the grid. Hence, circular-arc graphs form a subclass of B_{4}-EPG graphs. This leads to some natural questions. For example, the bend number of circular-arc graphs or the characterization of circular-arc graphs that are B_{k}-EPG graphs, for some $k<4$. One of the main results of this paper is that the bend number of circular-arc graphs is 3 .

Another interesting question is how many bends per path are needed for a circular-arc graph to be represented in a rectangle of the grid, i.e., in such a way that the union of the paths is contained in the boundary of a rectangle of the grid. We call such graphs edge intersection graphs of paths on a rectangle (EPR graphs). It is easy to see that EPR graphs are exactly the circular-arc graphs. We will study the classes B_{k}-EPR, for $0 \leq k \leq 4$, in which the paths on the grid that represent the vertices of the graph have at most k bends. As before, we denote by B_{k}-EPR, $k \geq 0$, the class of B_{k}-EPR graphs. Similar to the case of EPG graphs, one can define for a circular-arc graph G the bend number with respect to an EPR representation as the smallest integer k such that G is a B_{k}-EPR graph. Notice that CA $=E P R=B_{4}$-EPR. We strengthen this observation by showing that the bend number for circular-arc graphs with respect to EPR representations is 4. Furthermore, we focus on B_{1}-EPR graphs and B_{2}-EPR graphs (B_{0}-EPR graphs correspond again to interval graphs), and relate these classes with the class of normal Helly circular-arc graphs. In summary, we obtain the following results: we prove that the bend number of normal circular-arc graphs with respect to EPR representations is 2; moreover, we characterize B_{1}-EPR graphs by a family of minimal forbidden induced subgraphs, and show that they are exactly the normal Helly circular-arc graphs containing no powers of cycles $C_{4 k-1}^{k}$, with $k \geq 2$, as induced subgraphs.

An extended abstract of a preliminary version of this work was published in the proceedings of LAGOS 2015 [1].

2. Preliminaries

All graphs that we consider in this paper are connected, finite and simple. For all graph theoretical terms and notations not defined here, we refer the reader to [5].

We denote by $C_{n}, n \geq 3$, the chordless cycle on n vertices. A graph is called chordal, if every cycle of length at least four has a chord. Given a graph G and an integer $k \geq 0$, the power graph G^{k} has the same vertex set as G, two vertices being adjacent in G^{k} if their distance in G is at most k.

Let $G=(V, E)$ be a graph and let $X \subseteq V$. We denote by $G-X$ the subgraph of G induced by the vertex set $V-X$.
A clique (resp. a stable set) is a subset of vertices that are pairwise adjacent (resp. non adjacent). We say that a vertex v dominates a vertex w if they are adjacent and every neighbor of w is also a neighbor of v.

A thick spider $S_{n}, n \geq 2$, is the graph whose $2 n$ vertices can be partitioned into a clique $K=\left\{c_{1}, \ldots, c_{n}\right\}$ and a stable set $S=\left\{s_{1}, \ldots, s_{n}\right\}$ such that, for $1 \leq i, j, \leq n, c_{i}$ is adjacent to s_{j} if and only if $i \neq j$. Notice that $S_{n_{1}}$ is an induced subgraph of $S_{n_{2}}$ if $n_{1} \leq n_{2}$. (The name spider for graphs or graph classes has been used in the literature with different meanings. We follow the notation in [16], in the particular case in which the head of the spider is empty.)

Given a circle \mathcal{C} of length ℓ, we can assign to vertices s_{1}, \ldots, s_{n} of the thick spider S_{n} a set of pairwise disjoint arcs of \mathcal{C}, each of them of length $\ell / n-2 \varepsilon$, and to vertices c_{1}, \ldots, c_{n} of S_{n} a set of arcs of \mathcal{C} of length $(n-1) \ell / n+\varepsilon$ each (where ε is a small enough real number), in such a way that the arc corresponding to c_{i} is disjoint from the arc corresponding to s_{i} and intersects every other arc corresponding to a vertex in S, for $i=1, \ldots, n$. Notice that since the length of each of the arcs corresponding to vertices in K is greater than $\ell / 2$, they are pairwise intersecting. So, S_{n} is a circular-arc graph, as we have described a circular-arc model for it.

More in general, if G is a circular-arc graph, \mathcal{C} denotes the corresponding circle, and \mathscr{A} the corresponding set of open arcs, then $(\mathcal{A}, \mathcal{C})$ is called a circular-arc model of G [20]. A graph G is a Helly circular-arc graph (HCA graph) [10] if it is a circular-arc graph having a circular-arc model such that any subset of pairwise intersecting arcs has a common point on the circle. Such a model is called a Helly model. A circular-arc graph having a circular-arc model without two arcs covering the whole circle is called a normal circular-arc graph (NCA graph), and such a model is called a normal model. Circular-arc models that are at the same time normal and Helly are precisely those without three or less arcs covering the whole circle (see, for example, Theorem 1 in [18]). A graph that admits such a model is called a normal Helly circular-arc graph (NHCA graph) [17]. We will denote by NCA (resp. NHCA) the class of normal (resp. normal Helly) circular-arc graphs.

https://daneshyari.com/en/article/6871699

Download Persian Version:

https://daneshyari.com/article/6871699

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: liliana@mate.unlp.edu.ar (L. Alcón), fbonomo@dc.uba.ar (F. Bonomo), gduran@dm.uba.ar (G. Durán), marisa@mate.unlp.edu.ar (M. Gutierrez), pia@mate.unlp.edu.ar (M.P. Mazzoleni), bernard.ries@unifr.ch (B. Ries), valencia@lipn.univ-paris13.fr (M. Valencia-Pabon).
 ${ }^{1}$ Current address: Délégation at the INRIA Nancy - Grand Est, France.
 http://dx.doi.org/10.1016/j.dam.2016.08.004
 0166-218X/© 2016 Elsevier B.V. All rights reserved.

