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a b s t r a c t

A matching M is a dominating induced matching of a graph if every edge is either in M or
has a common end-vertex with exactly one edge inM . The extremal graphs on the number
of edges with dominating induced matchings are characterized by its Laplacian spectrum
and its principal Laplacian eigenvector. Adjacency, Laplacian and signless Laplacian spectral
bounds on the cardinality of dominating induced matchings are obtained for arbitrary
graphs. Moreover, it is shown that some of these bounds are sharp and examples of graphs
attaining the corresponding bounds are given.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper we consider undirected simple graphs G of order n > 1 with a vertex set V (G) and edge set E(G).
An element of E(G), which has the vertices i and j as end-vertices, is denoted by ij. A matchingM of G is a dominating induced
matching (say a DIM) of G if every edge of G is either inM or has a common end-vertex with exactly one edge inM . A DIM is
also called an efficient edge domination set (see for instance [10]). Observe that ifM is a DIM of G, then there is a partition of
V (G) into two disjoint subsets V (M) and S, where S is an independent set. Conversely, if there exists a graph G such that its
vertex set V (G) can be partitioned into two vertex subsets V1 and V2, where V1 induces a matching and V2 is an independent
set, then the subsetM ⊂ E(G) of edges with both ends in V1 is a DIM. Not all graphs have a DIM, for instance the cycle with
four vertices C4 has no DIM. The DIM problem asks whether a given graph has a dominating induced matching.

Dominating induced matchings have been studied, not always under the same designation, in [2,4,5,8,7,14,13,15]. The
DIMproblem is relatedwith several practical applications. Someof them, as parallel resource allocation of parallel processing
systems, encoding theory and network routing, as well as its relation with the 3-colorability problem are referred in [12].
In [12], it is also highlighted that graphs with dominating induced matchings are particular polar graphs. Notice that a polar
graph is a graphwhere its vertex set can be partitioned into vertex subsets such that some are disjoint cliques and the others
are independent sets with complete links between them [17]. Regarding its theoretical complexity, the DIM problem is
NP-complete [10]. However, in [12] it is conjectured that unless P = NP , the DIM problem is polynomial-time solvable in
the class of M-free graphs (where M is a finite set of graphs) if and only if M contains a graph from the class of graphs such
that every connected component corresponds to a long claw, that is, a connected graphwith a central vertex of degree three,
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three vertices of degree one, and all the remaining vertices have degree two (that is, formed by three paths starting from a
central vertex). In fact, the sufficient condition was proved in [7], but the necessary one remains open.

This paper is devoted to the study of the DIM problem from the graph spectra point of view. Next, for the reader
convenience, we introduce some of the basic concepts and notation used throughout the paper. For the remaining
terminology from graph theory, including spectral graph theory, the reader is referred to the book [9].

The adjacency matrix of a graph G of order n is the n × n symmetric matrix A (G) =

aij

where aij = 1 if ij ∈ E(G)

and aij = 0 otherwise, respectively. The Laplacian (signless Laplacian) matrix of G is the matrix L(G) = D(G) − A(G)
(Q (G) = D(G) + A(G)), where D(G) is the n × n diagonal matrix of vertex degrees of G. The matrices A (G), L (G) and Q (G)
are all real and symmetric. From Geršgorin’s theorem, it follows that the eigenvalues of L (G) and Q (G) are nonnegative
real numbers. The spectrum of A(G), L(G) and Q (G) is denoted by σA(G), σL(G) and σQ (G), respectively. In this text,
σA(G) = {λ

[i1]
1 , . . . , λ

[ip]
p }, σL(G) = {µ

[j1]
1 , . . . , µ

[jq]
q } and σQ (G) = {q[k1]

1 , . . . , q[kr ]
r } mean that λs, µs and qs are an adjacency,

Laplacian and signless Laplacian eigenvalue with multiplicity is, js or ks. As usually, we denote the eigenvalues of A (G),
L (G) and Q (G) in nonincreasing order, that is, λ1(G) ≥ · · · ≥ λn(G), µ1(G) ≥ · · · ≥ µn(G) and q1(G) ≥ · · · ≥ qn(G).
Considering a graph G, the largest eigenvalue of A(G), L(G) and Q (G) will be denoted, respectively, by ρ(A(G)), ρ(L(G)) and
ρ(Q (G)). As usually, ρ(A(G)) is called the index of G and it is also denoted ρ(G). The associated eigenvectors are called the
principal eigenvectors of A(G), L(G) or Q (G), respectively. For an arbitrary square matrix C the ith eigenvalue and its trace
are denoted by λi(C) and tr(C), respectively. Throughout this paper, jk denotes the all one vector with k entries and t +σ(C)
means that we add t to each eigenvalue in σ(C).

Consider a graphG of order nwith a DIMM ⊂ E(G) such that |M| = m, where (as above) V (G) = V1∪V2, with V1 = V (M)
and V2 = V (G) \ V1 is an independent set. The property of having a DIM does not change whether we add edges linking
the vertices of V1 with the vertices of V2. The extremal graph G′, obtained from G adding m(2(n − 2m) + 1) − |E(G)| edges
(which is the maximum as possible) between V1 and V2, that is, such that E(G′) = M ∪ {xy : x ∈ V (M), y ∈ V (G) \ V (M)} is
herein called a complete dominating induced matching, say a CDIM. These graphs are particular cases of cographs [3].

The paper is organized as follows. In Section 2, the extremal graphs CDIM, are characterized by its Laplacian spectrum
and by its principal Laplacian eigenvector. Notice that this characterization is important since in general, as it is well know,
co-spectral graphs (relatively to adjacency, Laplacian or signless Laplacian matrices) are not necessarily isomorphic. The
principal adjacency and signless Laplacian eigenvectors are deduced. Additionally, the adjacency and signless Laplacian
spectra of graphs with a CDIM are presented. In Section 3, adjacency, Laplacian and signless Laplacian spectral bounds on
the cardinality of dominating inducedmatchings are obtained for arbitrary graphs. Moreover, it is shown that some of these
bounds are sharp and examples of graphs attaining the corresponding bounds are given.

2. Adjacency, Laplacian and signless Laplacian spectra of graphs with a CDIM

Given a graphH of order nwith a CDIM,M such that |M| = m, wemay defineH using the join graph operation as follows.
Let Hr = mK2, with r = 2m and Hs = G[V (G) \ V (M)], with s = n − r , a null graph of order s (that is, a graph formed by s
isolated vertices). Then H = Hr ∨ Hs, that is, H is the join of the graphs Hr and Hs.

Consider the two above vertex disjoint graphs Hr and Hs and label the vertices of H = Hr ∨Hs, with the labels 1, 2, . . . , r
for the vertices of Hr and with the labels r + 1, . . . , r + s, for the vertices of Hs. Let C (H) be a matrix on H = Hr ∨ Hs. If
C (H) = L (H) or C (H) = A (H) or C (H) = Q (H) then, using the above mentioned labeling for the vertices of H , we obtain

C (H) =


C1 δjr jTs

δjsjTr C2


, (1)

where δ is a scalar parameter, C1 = A(Hr) and C2 = A(Hs) or C1 = L(Hr) + sIr and C2 = L(Hs) + rIs or C1 = Q (Hr) + sIr and
C2 = Q (Hs) + rIs, when C(H) is the adjacency, Laplacian or signless Laplacian matrix of H , respectively. In any case, in (1)
we have δ ∈ {1, −1}. Notice that

C1jr = γ1jr and C2js = γ2js,

with γ1 = 1 and γ2 = 0 (when C(H) is the adjacency matrix) or γ1 = s and γ2 = r (when C(H) is the Laplacian matrix) or
γ1 = 2 + s and γ2 = r (when C(H) is the signless Laplacian matrix).

Let us consider the matrix

B =


γ1 δ

√
rs

δ
√
rs γ2


, (2)

where δ = ±1, and its eigenvalues

θ1 =
1
2


γ1 + γ2 +


(γ1 − γ2)2 + 4rs


(3)

θ2 =
1
2


γ1 + γ2 −


(γ1 − γ2)2 + 4rs


. (4)
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