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a b s t r a c t

An ingenious graph-based watermarking scheme recently proposed by Chroni and
Nikolopoulos encodes integers as a special type of reducible permutation graphs. It was
claimed without proof that those graphs can withstand attacks in the form of a single
edge removal. We introduce a linear-time algorithm which restores the original graph
after removals of k ≤ 2 edges, therefore proving an even stronger result. Furthermore,
we prove that k ≤ 5 general edge modifications (removals/insertions) can always be
detected in polynomial time. Both bounds are tight. Our results reinforce the interest in
regarding Chroni and Nikolopoulos’s scheme as a possible software watermarking solution
for numerous applications.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Among the modern methods to fight the illegal reproduction of software, the embedding of digital watermarks deserves
attention. Roughly speaking, softwarewatermarks hide encoded identification data into a program. They allow for the timely
retrieval of authorship and/or ownership information, therefore discouraging piracy.

Soon after the creation of the first software watermark in 1996 by Davidson and Myhrvold [8], many interesting ideas
have followed, including encoding a binary – the identifier – as a special digraph embedded into the software’s control-
flow graph, an idea which was patented by Venkatesan and Vazirani in 2006 [12]. Graph-basedwatermarking schemes have
received a lot of attention ever since, and due emphasis must be given to the contributions of Collberg et al. in a series
of papers [6,7,5]. More recently, Chroni and Nikolopoulos presented an ingenious such scheme [3,4], where the generated
watermark graphs constitute a subclass of reducible flow graphs [9–11]. Such subclass possesses desirable features, among
which its ease of implementation and its linear-time running time. A third feature would be its alleged resilience to attacks.
However, though its ability to withstand single edge removals has been conjectured in [4], proving or disproving it was still
an open problem.

✩ A preliminary version containing partial results of this paper was presented as an extended abstract entitled ‘‘Towards a provably resilient scheme
for graph-based watermarking’’ at the 39th International Workshop on Graph Theoretic Concepts in Computer Science, WG 2013, and appeared in Lecture
Notes in Computer Science 8165 (2013), 50–63.
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In [1,2], a formal characterization of the class of graphs produced by Chroni and Nikolopoulos’s encoding function was
given. They were referred to as canonical reducible permutation graphs. We have also formulated a robust polynomial-time
algorithm that, given a watermark with an arbitrary number k ≥ 0 of deleted edges, either retrieves the encoded identifier
or proves that to be an impossible task. In the present paper, we disclose the actual resilience of Chroni and Nikolopoulos’s
watermark by proposing a linear-time procedure which always succeeds in reconstituting a watermark from which k ≤ 2
edges were removed, a bound which is the best possible. Moreover, our results imply that k ≤ 5 edge deletions and/or
insertions can always be detected in polynomial time, a bound that is also tight.

Even though the resilience against two edge removals may look modest, notice that, from the attacker’s standpoint, the
fact that the watermark can withstand even a single edge removal may already be hard to surmount. Indeed, because the
location of the watermark in the software binary is unknown, one cannot domuch better than the trial-and-error approach,
hoping to spoil the watermark by removing as few as possible arbitrarily chosen edges, so not to spoil the very functionality
of the software. If the watermarking scheme is resilient to some number k ≥ 1 of edge removals, though, then the attacker
should remove at least k+ 1 arbitrarily chosen edges, and the probability that the software functionality is affected grows
with k. Moreover, the total number of brute-force trials – the

 m
k+1


subsets of k+ 1 edges – also grows fast with kwhen k is

very small compared to the total numberm of edges.
This paper is organized as follows. In Section 2, we recall the watermark from Chroni and Nikolopoulos. In Section 3, we

revisit some necessary definitions and previous results. In Section 4, we formulate linear-time algorithms to reconstruct the
original graph and recover the encoded data even if two edges are missing. The proof of one of the central results in that
section, namely Theorem 11, is somewhat involved, andwe dedicate to it thewhole Section 5. Section 6 concludes the paper
with our final remarks.

Throughout the text, we let V (G) and E(G) respectively denote, as usual, the vertex set and edge set of a given graph G.
Also, we let N+G (v) and N−G (v) be the sets of out-neighbors and in-neighbors of vertex v in G, with d+G (v) and d−G (v) their
respective sizes. If J is a subset of either V (G) or E(G), then G− J corresponds to the graph obtained from G by the removal
of J .

2. The watermark from Chroni and Nikolopoulos

We recall the encoding algorithm described in [4]. The index of the first element in all considered sequences is 1.
Letω be a positive integer identifier, and n the size of the binary representation B ofω. Let also n0 and n1 be the number of

0’s and 1’s, respectively, in B, and let f0 be the index of the leftmost 0 in B. The extended binary B∗ is obtained by concatenating
n digits 1, followed by the one’s complement of B and by a single digit 0. We let n∗ = 2n+ 1 denote the size of B∗, and we
define Z0 = (z0i ), i = 1, . . . , n1 + 1, as the ascending sequence of indexes of 0’s in B∗, and Z1 = (z1i ), i = 1, . . . , n + n0, as
the ascending sequence of indexes of 1’s in B∗.

Let S be a sequence of integers. We denote by SR the sequence formed by the elements of S in backward order. If S = (si),
for i = 1, . . . , t , and there is an integer k ≤ t such that the subsequence consisting of the elements of S with indexes less
than or equal to k is ascending, and the subsequence consisting of the elements of S with indexes greater than or equal
to k is descending, then we say S is bitonic. If all t elements of a sequence S are distinct and belong to {1, . . . , t}, then S
is a permutation. If S is a permutation of size t , and, for all 1 ≤ i ≤ t , the equality i = ssi holds, then we say S is self-
inverting. In this case, the unordered pair (i, si) is called a 2-cycle of S, if i ≠ si, and a 1-cycle of S, if i = si. If S1, S2 are
sequences (respectively, paths in a graph), we denote by S1 ∥ S2 the sequence (respectively, path) formed by the elements
of S1 followed by the elements of S2.

Back to Chroni and Nikolopoulos’s algorithm, we define Pb = (bi), with i = 1, . . . , n∗, as the bitonic permutation
Z0 ∥ ZR

1 . Finally, the self-inverting permutation Ps = (si) is obtained from Pb as follows: for i = 1, . . . , n∗, element sbi
is assigned value bn∗−i+1, and element sbn∗−i+1 is assigned value bi. In other words, the 2-cycles of Ps correspond to the n
unordered pairs of distinct elements of Pb that share the same minimum distance to one of the extremes of Pb, that is, the
pairs (p, q) = (bi, bn∗−i+1), for i = 1, . . . , n. Since the central index i = n+ 1 of Pb is the solution of equation n∗− i+ 1 = i,
element bn+1 – and no other – will constitute a 1-cycle in Ps. We refer to such element of Ps as its fixed element, and we let f
denote it.

The watermark generated by Chroni and Nikolopoulos’s encoding algorithm [4] is a directed graph Gwhose vertex set is
{0, 1, . . . , 2n+2}, andwhose edge set contains 4n+3 edges, towit: a path edge (u, u−1) for u = 1, . . . , 2n+2, constituting
a Hamiltonian path that will be unique in G, and a tree edge from u to q(u), for u = 1, . . . , n∗, where q(u) is defined as the
vertex v > u with the greatest index in Ps to the left of u, if such v exists, or 2n + 2 otherwise. The rationale behind the
name tree edge is the fact that such edges induce a spanning tree of G \ {0}.

Let us glance at an example. For ω = 349, we have B = 101011101, n = 9, n0 = 3, n1 = 6, f0 = 2,
B∗ = 1111111110101000100, n∗ = 19, Z0 = (10, 12, 14, 15, 16, 18, 19), Z1 = (1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17),
Pb = (10, 12, 14, 15, 16, 18, 19, 17, 13, 11, 9, 8, 7, 6, 5, 4, 3, 2, 1), Ps = (10, 12, 14, 15, 16, 18, 19, 17, 13, 1, 11, 2, 9, 3,
4, 5, 8, 6, 7) and f = 11. The watermark associated to ω presents, besides the path edges in the Hamiltonian path
20, 19, . . . , 0, the tree edges (1, 13), (2, 11), (3, 9), (4, 9), (5, 9), (6, 8), (7, 8), (8, 9), (9, 11), (10, 20), (11, 13),
(12, 20), (13, 17), (14, 20), (15, 20), (16, 20), (17, 19), (18, 20) and (19, 20).
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