ARTICLE IN PRESS

Discrete Applied Mathematics (

ELSEVIER

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Minimal graphs for matching extensions

M.-C. Costa^a, D. de Werra^b, C. Picouleau^{c,*}

^a Ecole Nationale Supérieure des Techniques Avancées Paris-Tech and CEDRIC laboratory, Paris, France

^b Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

^c Conservatoire National des Arts et Métiers, CEDRIC laboratory, Paris, France

ARTICLE INFO

Article history: Received 19 March 2015 Received in revised form 3 November 2015 Accepted 7 November 2015 Available online xxxx

Keywords: Maximum matching Matching extension Expandable graph Completable graph

ABSTRACT

Given a positive integer *n* we find a graph G = (V, E) on |V| = n vertices with a minimum number of edges such that for any pair of non adjacent vertices *x*, *y* the graph G - x - y contains a (almost) perfect matching *M*. Intuitively the non edge *xy* and *M* form a (almost) perfect matching of *G*. Similarly we determine a graph G = (V, E) with a minimum number of edges such that for any matching \overline{M} of the complement \overline{G} of *G* with size $\lfloor \frac{n}{2} \rfloor - 1, G - V(\overline{M})$

contains an edge *e*. Here \overline{M} and the edge *e* of *G* form a (almost) perfect matching of \overline{G} . We characterize these minimal graphs for all values of *n*.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

We shall consider here a kind of reliability problem which occurs rather naturally in a context where some elements of a complex system may break down either due to attacks or simply to technical failures. We want to protect a subset of elements (as small as possible) in order to keep the system working in spite of possible failures occurring in the rest of the system.

To give a formulation in terms of graphs, we introduce definitions and notations. Given a simple finite graph G = (V, E) with n vertices v_1, v_2, \ldots, v_n and m edges, we denote by $\overline{G} = (V, \overline{E})$ the complement of G. For any subset $F \subseteq E$, V(F) is the set of endpoints of the edges in F. For any subset $X \subseteq V$ the subgraph induced by X is denoted by G[X]. We write $G - X = G[V \setminus X]$ and G - v for $G - \{v\}$. The union of two graphs G_1, G_2 on disjoint vertex sets without any edges between them is written $G_1 + G_2$. $N_G(v)$ is the set of neighbors of a vertex v in G; $\delta_G(v) = |N_G(v)|$ is the degree of v in G; a p-vertex is a vertex of degree p in G; if $\delta_G(v) = n - 1$ then v is universal. For any nonempty subset $A \subseteq V$ we denote by $N_G(A)$ the set of vertices $v \in V \setminus A$ having a neighbor in A, i.e. $N_G(A) = \bigcup_{v \in A} N_G(v) \setminus A$. Let A, B be disjoint sets of vertices. We denote by $m_G(A, B)$ the number of edges linking A and B.

A subset $M \subseteq E$ is a *matching* if no two edges in M are incident to a same vertex; $\mu(G)$ is the maximum cardinality of a matching in G. G has a *perfect* matching if $\mu(G) = n/2$ and an *almost perfect* matching if $\mu(G) = (n-1)/2$.

For all definitions related to graphs, see [4].

We intend to determine for two given positive integers d, n a graph G = (V, E) on n vertices with a minimum number of edges, such that to any matching \overline{M} of d edges of \overline{G} one can associate a matching of $\lfloor n/2 \rfloor - d$ edges in $G - V(\overline{M})$. Hence if the edges of \overline{M} would be edges in G, then $\overline{M} \cup M$ would be a (almost) perfect matching of G. Notice that a feasible set E of

http://dx.doi.org/10.1016/j.dam.2015.11.007 0166-218X/© 2015 Elsevier B.V. All rights reserved.

Please cite this article in press as: M.-C. Costa, et al., Minimal graphs for matching extensions, Discrete Applied Mathematics (2015), http://dx.doi.org/10.1016/j.dam.2015.11.007

^{*} Corresponding author.

E-mail addresses: marie-christine.costa@ensta-paristech.fr (M.-C. Costa), christophe.picouleau@cnam.fr (D. de Werra), dominique.dewerra@epfl.ch (C. Picouleau).

2

ARTICLE IN PRESS

M.-C. Costa et al. / Discrete Applied Mathematics 🛛 (💵 🖿) 💵 – 💵

edges always exists: take for instance for *E* the edges of a complete graph on *n* vertices from which we remove a matching of size *d*.

In our paper we determine the minimum size of *expandable* graphs *G* (corresponding to the case d = 1); these are graphs such that for any edge *xy* in \overline{E} , the subgraph G - x - y has a (almost-)perfect matching. Similarly we determine the minimum size of *completable* graphs *G* (corresponding to the case $d = \lfloor n/2 \rfloor - 1$); these are graphs such that for any matching \overline{M} of \overline{G} with $|\overline{M}| = \lfloor n/2 \rfloor - 1$ there exists an edge $uv \in G - V(\overline{M})$.

In our reliability interpretation the edges of these minimal graphs *G* are the ones which should be protected so that one could extend the matchings \overline{M} of size *d* to (almost)-perfect matchings in spite of failures in \overline{G} .

Various concepts of matching extension have been studied. Some consider these extensions in special classes of graphs [1,6,12]. In [11,12] several properties related to perfect matchings are examined. It is the case of *d*-extendable graphs defined as graphs in which every matching of size *d* can be extended to a perfect matching. In particular for d = 1, one requires that for any edge *xy*, G - x - y has a perfect matching [10]. A graph is *bicritical* if for any pair {*x*, *y*} of vertices, *xy* being an edge or not, G - x - y has a perfect matching. Notice that the graphs considered there have a perfect matching. Clearly a bicritical graph is 1-extendable and also expandable. A claw $K_{1,3}$ is expandable but not 1-extendable and a cycle C_6 is 1-extendable but not expandable.

It is worth underlining that to our knowledge matching extensions by edges of G or \overline{G} have not been associated with the optimization of the size of the graphs. This is the main motivation for this research.

In Section 2 we will characterize the expandable graphs of n vertices with a minimum number of edges. The case where the expandable graphs are constrained to be connected is treated in the third section. Then Section 4 will be devoted to completable graphs on n vertices with a minimum number of edges. Finally we will mention in the conclusion some variations and generalizations.

2. Minimal expandable graphs

We want to find a graph *G* with a minimum number of edges such that for every pair *u*, *v* of non adjacent vertices of *G* it is always possible to extend the non-edge *uv* to a perfect (or almost perfect) matching using only edges of *G* that are not incident to *u* or *v*, formally $\mu(G - u - v) = \lfloor n/2 \rfloor - 1$.

We say that *G* is *expandable* if for any non-edge $uv \notin E$ there exists a matching *M* of G - u - v with $|M| = \lfloor n/2 \rfloor - 1$. An expandable graph G = (V, E) on *n* vertices with a minimum number of edges is a *Minimum Expandable Graph*. The

size |E| of its edge set is denoted by Exp(n). The set of minimal expandable graphs of order *n* is called MEG(n).

Since the problem is trivial for $n \leq 3$ we shall assume $n \geq 4$.

Proposition 2.1. *For* $4 \le n \le 7$ *we have:*

- Exp(4) = 3 and $MEG(4) = \{K_{1,3}, \overline{K}_{1,3}\};$
- Exp(5) = 3 and $MEG(5) = \{K_3 + 2K_1\}$;
- Exp(6) = 6 and $MEG(6) = \{2K_3\}$;
- Exp(7) = 6 and $MEG(7) = \{2K_3 + K_1, C_5 + K_2\}.$

Proof. Let n = 4. One can verify that $K_{1,3}$ and its complement $\bar{K}_{1,3}$ are expandable. Suppose that there exists $G = (V, E) \in MEG(4)$ with |E| = 2: then *G* has two non adjacent 1-vertices v_1, v_2 ; so $\mu(G - v_1 - v_2) = 0 < 1$. The only graph with three edges non isomorphic to $K_{1,3}$ or $\bar{K}_{1,3}$ is P_4 , and P_4 is not expandable.

Let n = 5. One can verify that $K_3 + 2K_1$ is expandable. Suppose that there exists $G = (V, E) \in MEG(5)$ with |E| = 2: then G has two non adjacent 1-vertices v_1, v_2 ; so $\mu(G - v_1 - v_2) = 0 < 1$. The only non isomorphic graphs with 3 edges are $K_3 + 2K_1, P_4 + K_1, P_3 + K_2, K_{1,3} + K_1$. Among them only $K_3 + 2K_1$ is expandable.

Let n = 6. One can verify that $2K_3$ is expandable. Suppose that there exists $G = (V, E) \in MEG(6)$ with $|E| \le 5$: if G has a 1-vertex v_1 , its neighbor v_2 must be universal otherwise $\mu(G - v_2 - v_i) < 2$, $v_i \notin N_G(v_2)$. But $G = K_{1,5}$ is clearly not expandable. So G has a 0-vertex and then the five remaining vertices must induce K_5 which has more than six edges.

We prove that the only graph in MEG(6) is $2K_3$. Suppose that there exists $G \in MEG(6)$ and $G \neq 2K_3$. It cannot have a 0-vertex. If G has a 1-vertex then its neighbor must be universal and G consists of a spanning star and an additional edge; such a G is not expandable. It follows that all vertices have degree two and thus $G \in \{C_6, 2K_3\}$ but C_6 is not expandable, hence $G = 2K_3$.

Let n = 7. One can verify that $2K_3 + K_1$ and $C_5 + K_2$ are expandable. Suppose that there exists $G = (V, E) \in MEG(7)$ with $|E| \le 5$: If there exists a 0-vertex u then G - u must be expandable and from above $|E| \ge 6$. So there are at least four 1-vertices and two of them v_1 , v_2 are in two different connected components then $\mu(G - w_1 - w_2) < 2$ where w_1 , w_2 are the neighbors of v_1 , v_2 .

We prove that $MEG(7) = \{2K_3 + K_1, C_5 + K_2\}$. Suppose that there exist $G = (V, E) \in MEG(7)$, |E| = 6, and $G \neq 2K_3 + K_1$, $C_5 + K_2$. If *G* has one 0-vertex *u* then G - u must be expandable: so $G - u = 2K_3$ and $G = 2K_3 + K_1$. It follows that the number *k* of 1-vertices in *G* is at least two.

Two 1-vertices cannot have a common neighbor otherwise *G* must be a spanning star which is clearly not expandable. Moreover, the neighbors of 1-vertices must induce a clique: if k > 2, since |E| = 6, then k = 3 and there is a 0-vertex: a contradiction.

Please cite this article in press as: M.-C. Costa, et al., Minimal graphs for matching extensions, Discrete Applied Mathematics (2015), http://dx.doi.org/10.1016/j.dam.2015.11.007

Download English Version:

https://daneshyari.com/en/article/6871705

Download Persian Version:

https://daneshyari.com/article/6871705

Daneshyari.com