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a b s t r a c t

Given a positive integer nwe find a graph G = (V , E) on |V | = n vertices with a minimum
number of edges such that for any pair of non adjacent vertices x, y the graph G − x − y
contains a (almost) perfect matchingM . Intuitively the non edge xy andM form a (almost)
perfectmatching ofG. Similarlywe determine a graphG = (V , E)with aminimumnumber
of edges such that for anymatching M̄ of the complement Ḡ ofGwith size ⌊

n
2 ⌋−1,G−V (M̄)

contains an edge e. Here M̄ and the edge e of G form a (almost) perfect matching of Ḡ.
We characterize these minimal graphs for all values of n.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

We shall consider here a kind of reliability problem which occurs rather naturally in a context where some elements
of a complex system may break down either due to attacks or simply to technical failures. We want to protect a subset of
elements (as small as possible) in order to keep the system working in spite of possible failures occurring in the rest of the
system.

To give a formulation in terms of graphs, we introduce definitions and notations. Given a simple finite graph G = (V , E)
with n vertices v1, v2, . . . , vn and m edges, we denote by Ḡ = (V , Ē) the complement of G. For any subset F ⊆ E, V (F)
is the set of endpoints of the edges in F . For any subset X ⊆ V the subgraph induced by X is denoted by G[X]. We write
G − X = G[V \ X] and G − v for G − {v}. The union of two graphs G1,G2 on disjoint vertex sets without any edges between
them is written G1 + G2. NG(v) is the set of neighbors of a vertex v in G; δG(v) = |NG(v)| is the degree of v in G; a p-vertex
is a vertex of degree p in G; if δG(v) = n− 1 then v is universal. For any nonempty subset A ⊆ V we denote by NG(A) the set
of vertices v ∈ V \ A having a neighbor in A, i.e. NG(A) =


v∈A NG(v) \ A. Let A, B be disjoint sets of vertices. We denote by

mG(A, B) the number of edges linking A and B.
A subset M ⊆ E is a matching if no two edges in M are incident to a same vertex; µ(G) is the maximum cardinality of a

matching in G. G has a perfect matching if µ(G) = n/2 and an almost perfect matching if µ(G) = (n − 1)/2.
For all definitions related to graphs, see [4].
We intend to determine for two given positive integers d, n a graph G = (V , E) on n vertices with a minimum number

of edges, such that to any matching M̄ of d edges of Ḡ one can associate a matching of ⌊n/2⌋ − d edges in G − V (M̄). Hence
if the edges of M̄ would be edges in G, then M̄ ∪ M would be a (almost) perfect matching of G. Notice that a feasible set E of
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edges always exists: take for instance for E the edges of a complete graph on n vertices from which we remove a matching
of size d.

In our paper we determine theminimum size of expandable graphs G (corresponding to the case d = 1); these are graphs
such that for any edge xy in Ē, the subgraph G−x−y has a (almost-)perfect matching. Similarly we determine theminimum
size of completable graphs G (corresponding to the case d = ⌊n/2⌋ − 1); these are graphs such that for any matching M̄ of
Ḡwith |M̄| = ⌊n/2⌋ − 1 there exists an edge uv ∈ G − V (M̄).

In our reliability interpretation the edges of these minimal graphs G are the ones which should be protected so that one
could extend the matchings M̄ of size d to (almost)-perfect matchings in spite of failures in Ḡ.

Various concepts of matching extension have been studied. Some consider these extensions in special classes of graphs
[1,6,12]. In [11,12] several properties related to perfectmatchings are examined. It is the case of d-extendable graphs defined
as graphs in which every matching of size d can be extended to a perfect matching. In particular for d = 1, one requires that
for any edge xy, G− x− y has a perfect matching [10]. A graph is bicritical if for any pair {x, y} of vertices, xy being an edge or
not, G − x − y has a perfect matching. Notice that the graphs considered there have a perfect matching. Clearly a bicritical
graph is 1-extendable and also expandable. A claw K1,3 is expandable but not 1-extendable and a cycle C6 is 1-extendable
but not expandable.

It is worth underlining that to our knowledge matching extensions by edges of G or Ḡ have not been associated with the
optimization of the size of the graphs. This is the main motivation for this research.

In Section 2 we will characterize the expandable graphs of n vertices with a minimum number of edges. The case where
the expandable graphs are constrained to be connected is treated in the third section. Then Section 4 will be devoted
to completable graphs on n vertices with a minimum number of edges. Finally we will mention in the conclusion some
variations and generalizations.

2. Minimal expandable graphs

We want to find a graph G with a minimum number of edges such that for every pair u, v of non adjacent vertices of G
it is always possible to extend the non-edge uv to a perfect (or almost perfect) matching using only edges of G that are not
incident to u or v, formally µ(G − u − v) = ⌊n/2⌋ − 1.

We say that G is expandable if for any non-edge uv ∉ E there exists a matchingM of G − u − v with |M| = ⌊n/2⌋ − 1.
An expandable graph G = (V , E) on n vertices with a minimum number of edges is a Minimum Expandable Graph. The

size |E| of its edge set is denoted by Exp(n). The set of minimal expandable graphs of order n is calledMEG(n).
Since the problem is trivial for n ≤ 3 we shall assume n ≥ 4.

Proposition 2.1. For 4 ≤ n ≤ 7 we have:

• Exp(4) = 3 and MEG(4) = {K1,3, K̄1,3};
• Exp(5) = 3 and MEG(5) = {K3 + 2K1};
• Exp(6) = 6 and MEG(6) = {2K3};
• Exp(7) = 6 and MEG(7) = {2K3 + K1, C5 + K2}.

Proof. Let n = 4. One can verify that K1,3 and its complement K̄1,3 are expandable. Suppose that there exists G = (V , E) ∈

MEG(4) with |E| = 2 : then G has two non adjacent 1-vertices v1, v2; so µ(G− v1 − v2) = 0 < 1. The only graph with three
edges non isomorphic to K1,3 or K̄1,3 is P4, and P4 is not expandable.

Let n = 5. One can verify that K3 + 2K1 is expandable. Suppose that there exists G = (V , E) ∈ MEG(5) with |E| = 2:
then G has two non adjacent 1-vertices v1, v2; so µ(G − v1 − v2) = 0 < 1. The only non isomorphic graphs with 3 edges
are K3 + 2K1, P4 + K1, P3 + K2, K1,3 + K1. Among them only K3 + 2K1 is expandable.

Let n = 6. One can verify that 2K3 is expandable. Suppose that there exists G = (V , E) ∈ MEG(6) with |E| ≤ 5: if G has
a 1-vertex v1, its neighbor v2 must be universal otherwise µ(G − v2 − vi) < 2, vi ∉ NG(v2). But G = K1,5 is clearly not
expandable. So G has a 0-vertex and then the five remaining vertices must induce K5 which has more than six edges.

We prove that the only graph in MEG(6) is 2K3. Suppose that there exists G ∈ MEG(6) and G ≠ 2K3. It cannot have a
0-vertex. If G has a 1-vertex then its neighbor must be universal and G consists of a spanning star and an additional edge;
such a G is not expandable. It follows that all vertices have degree two and thus G ∈ {C6, 2K3} but C6 is not expandable,
hence G = 2K3.

Let n = 7. One can verify that 2K3 + K1 and C5 + K2 are expandable. Suppose that there exists G = (V , E) ∈ MEG(7)
with |E| ≤ 5: If there exists a 0-vertex u then G − u must be expandable and from above |E| ≥ 6. So there are at least four
1-vertices and two of them v1, v2 are in two different connected components then µ(G − w1 − w2) < 2 where w1, w2 are
the neighbors of v1, v2.

We prove that MEG(7) = {2K3 + K1, C5 + K2}. Suppose that there exist G = (V , E) ∈ MEG(7), |E| = 6, and G ≠

2K3 + K1, C5 + K2. If G has one 0-vertex u then G− umust be expandable: so G− u = 2K3 and G = 2K3 + K1. It follows that
the number k of 1-vertices in G is at least two.

Two 1-vertices cannot have a common neighbor otherwise G must be a spanning star which is clearly not expandable.
Moreover, the neighbors of 1-vertices must induce a clique: if k > 2, since |E| = 6, then k = 3 and there is a 0-vertex: a
contradiction.
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