Minimal graphs for matching extensions

M.-C. Costa ${ }^{\text {a }}$, D. de Werra ${ }^{\text {b }}$, C. Picouleau ${ }^{\text {C,* }}$
${ }^{\text {a }}$ Ecole Nationale Supérieure des Techniques Avancées Paris-Tech and CEDRIC laboratory, Paris, France
${ }^{\text {b }}$ Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
${ }^{\text {c }}$ Conservatoire National des Arts et Métiers, CEDRIC laboratory, Paris, France

ARTICLE INFO

Article history:

Received 19 March 2015
Received in revised form 3 November 2015
Accepted 7 November 2015
Available online xxxx

Keywords:

Maximum matching
Matching extension
Expandable graph
Completable graph

Abstract

Given a positive integer n we find a graph $G=(V, E)$ on $|V|=n$ vertices with a minimum number of edges such that for any pair of non adjacent vertices x, y the graph $G-x-y$ contains a (almost) perfect matching M. Intuitively the non edge $x y$ and M form a (almost) perfect matching of G. Similarly we determine a graph $G=(V, E)$ with a minimum number of edges such that for any matching \bar{M} of the complement \bar{G} of G with size $\left\lfloor\frac{n}{2}\right\rfloor-1, G-V(\bar{M})$ contains an edge e. Here \bar{M} and the edge e of G form a (almost) perfect matching of \bar{G}.

We characterize these minimal graphs for all values of n.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

We shall consider here a kind of reliability problem which occurs rather naturally in a context where some elements of a complex system may break down either due to attacks or simply to technical failures. We want to protect a subset of elements (as small as possible) in order to keep the system working in spite of possible failures occurring in the rest of the system.

To give a formulation in terms of graphs, we introduce definitions and notations. Given a simple finite graph $G=(V, E)$ with n vertices $v_{1}, v_{2}, \ldots, v_{n}$ and m edges, we denote by $\bar{G}=(V, \bar{E})$ the complement of G. For any subset $F \subseteq E, V(F)$ is the set of endpoints of the edges in F. For any subset $X \subseteq V$ the subgraph induced by X is denoted by $G[X]$. We write $G-X=G[V \backslash X]$ and $G-v$ for $G-\{v\}$. The union of two graphs G_{1}, G_{2} on disjoint vertex sets without any edges between them is written $G_{1}+G_{2} . N_{G}(v)$ is the set of neighbors of a vertex v in $G ; \delta_{G}(v)=\left|N_{G}(v)\right|$ is the degree of v in G; a p-vertex is a vertex of degree p in G; if $\delta_{G}(v)=n-1$ then v is universal. For any nonempty subset $A \subseteq V$ we denote by $N_{G}(A)$ the set of vertices $v \in V \backslash A$ having a neighbor in A, i.e. $N_{G}(A)=\bigcup_{v \in A} N_{G}(v) \backslash A$. Let A, B be disjoint sets of vertices. We denote by $m_{G}(A, B)$ the number of edges linking A and B.

A subset $M \subseteq E$ is a matching if no two edges in M are incident to a same vertex; $\mu(G)$ is the maximum cardinality of a matching in G. G has a perfect matching if $\mu(G)=n / 2$ and an almost perfect matching if $\mu(G)=(n-1) / 2$.

For all definitions related to graphs, see [4].
We intend to determine for two given positive integers d, n a graph $G=(V, E)$ on n vertices with a minimum number of edges, such that to any matching \bar{M} of d edges of \bar{G} one can associate a matching of $\lfloor n / 2\rfloor-d$ edges in $G-V(\bar{M})$. Hence if the edges of \bar{M} would be edges in G, then $\bar{M} \cup M$ would be a (almost) perfect matching of G. Notice that a feasible set E of

[^0]edges always exists: take for instance for E the edges of a complete graph on n vertices from which we remove a matching of size d.

In our paper we determine the minimum size of expandable graphs G (corresponding to the case $d=1$); these are graphs such that for any edge $x y$ in \bar{E}, the subgraph $G-x-y$ has a (almost-)perfect matching. Similarly we determine the minimum size of completable graphs G (corresponding to the case $d=\lfloor n / 2\rfloor-1$); these are graphs such that for any matching \bar{M} of \bar{G} with $|\bar{M}|=\lfloor n / 2\rfloor-1$ there exists an edge $u v \in G-V(\bar{M})$.

In our reliability interpretation the edges of these minimal graphs G are the ones which should be protected so that one could extend the matchings \bar{M} of size d to (almost)-perfect matchings in spite of failures in \bar{G}.

Various concepts of matching extension have been studied. Some consider these extensions in special classes of graphs [1,6,12]. In [11,12] several properties related to perfect matchings are examined. It is the case of d-extendable graphs defined as graphs in which every matching of size d can be extended to a perfect matching. In particular for $d=1$, one requires that for any edge $x y, G-x-y$ has a perfect matching [10]. A graph is bicritical if for any pair $\{x, y\}$ of vertices, $x y$ being an edge or not, $G-x-y$ has a perfect matching. Notice that the graphs considered there have a perfect matching. Clearly a bicritical graph is 1-extendable and also expandable. A claw $K_{1,3}$ is expandable but not 1-extendable and a cycle C_{6} is 1-extendable but not expandable.

It is worth underlining that to our knowledge matching extensions by edges of G or \bar{G} have not been associated with the optimization of the size of the graphs. This is the main motivation for this research.

In Section 2 we will characterize the expandable graphs of n vertices with a minimum number of edges. The case where the expandable graphs are constrained to be connected is treated in the third section. Then Section 4 will be devoted to completable graphs on n vertices with a minimum number of edges. Finally we will mention in the conclusion some variations and generalizations.

2. Minimal expandable graphs

We want to find a graph G with a minimum number of edges such that for every pair u, v of non adjacent vertices of G it is always possible to extend the non-edge $u v$ to a perfect (or almost perfect) matching using only edges of G that are not incident to u or v, formally $\mu(G-u-v)=\lfloor n / 2\rfloor-1$.

We say that G is expandable if for any non-edge $u v \notin E$ there exists a matching M of $G-u-v$ with $|M|=\lfloor n / 2\rfloor-1$.
An expandable graph $G=(V, E)$ on n vertices with a minimum number of edges is a Minimum Expandable Graph. The size $|E|$ of its edge set is denoted by $\operatorname{Exp}(n)$. The set of minimal expandable graphs of order n is called $M E G(n)$.

Since the problem is trivial for $n \leq 3$ we shall assume $n \geq 4$.
Proposition 2.1. For $4 \leq n \leq 7$ we have:

- $\operatorname{Exp}(4)=3$ and $\operatorname{MEG}(4)=\left\{K_{1,3}, \bar{K}_{1,3}\right\}$;
- $\operatorname{Exp}(5)=3$ and $\operatorname{MEG}(5)=\left\{K_{3}+2 K_{1}\right\} ;$
- $\operatorname{Exp}(6)=6$ and $\operatorname{MEG}(6)=\left\{2 K_{3}\right\} ;$
- $\operatorname{Exp}(7)=6$ and $\operatorname{MEG}(7)=\left\{2 K_{3}+K_{1}, C_{5}+K_{2}\right\}$.

Proof. Let $n=4$. One can verify that $K_{1,3}$ and its complement $\bar{K}_{1,3}$ are expandable. Suppose that there exists $G=(V, E) \in$ $\operatorname{MEG}(4)$ with $|E|=2$: then G has two non adjacent 1 -vertices v_{1}, v_{2}; so $\mu\left(G-v_{1}-v_{2}\right)=0<1$. The only graph with three edges non isomorphic to $K_{1,3}$ or $\bar{K}_{1,3}$ is P_{4}, and P_{4} is not expandable.

Let $n=5$. One can verify that $K_{3}+2 K_{1}$ is expandable. Suppose that there exists $G=(V, E) \in M E G(5)$ with $|E|=2$: then G has two non adjacent 1-vertices v_{1}, v_{2}; so $\mu\left(G-v_{1}-v_{2}\right)=0<1$. The only non isomorphic graphs with 3 edges are $K_{3}+2 K_{1}, P_{4}+K_{1}, P_{3}+K_{2}, K_{1,3}+K_{1}$. Among them only $K_{3}+2 K_{1}$ is expandable.

Let $n=6$. One can verify that $2 K_{3}$ is expandable. Suppose that there exists $G=(V, E) \in M E G(6)$ with $|E| \leq 5$: if G has a 1-vertex v_{1}, its neighbor v_{2} must be universal otherwise $\mu\left(G-v_{2}-v_{i}\right)<2, v_{i} \notin N_{G}\left(v_{2}\right)$. But $G=K_{1,5}$ is clearly not expandable. So G has a 0 -vertex and then the five remaining vertices must induce K_{5} which has more than six edges.

We prove that the only graph in $\operatorname{MEG}(6)$ is $2 K_{3}$. Suppose that there exists $G \in M E G(6)$ and $G \neq 2 K_{3}$. It cannot have a 0 -vertex. If G has a 1 -vertex then its neighbor must be universal and G consists of a spanning star and an additional edge; such a G is not expandable. It follows that all vertices have degree two and thus $G \in\left\{C_{6}, 2 K_{3}\right\}$ but C_{6} is not expandable, hence $G=2 K_{3}$.

Let $n=7$. One can verify that $2 K_{3}+K_{1}$ and $C_{5}+K_{2}$ are expandable. Suppose that there exists $G=(V, E) \in M E G(7)$ with $|E| \leq 5$: If there exists a 0 -vertex u then $G-u$ must be expandable and from above $|E| \geq 6$. So there are at least four 1 -vertices and two of them v_{1}, v_{2} are in two different connected components then $\mu\left(G-w_{1}-w_{2}\right)<2$ where w_{1}, w_{2} are the neighbors of v_{1}, v_{2}.

We prove that $\operatorname{MEG}(7)=\left\{2 K_{3}+K_{1}, C_{5}+K_{2}\right\}$. Suppose that there exist $G=(V, E) \in \operatorname{MEG}(7),|E|=6$, and $G \neq$ $2 K_{3}+K_{1}, C_{5}+K_{2}$. If G has one 0 -vertex u then $G-u$ must be expandable: so $G-u=2 K_{3}$ and $G=2 K_{3}+K_{1}$. It follows that the number k of 1 -vertices in G is at least two.

Two 1-vertices cannot have a common neighbor otherwise G must be a spanning star which is clearly not expandable. Moreover, the neighbors of 1 -vertices must induce a clique: if $k>2$, since $|E|=6$, then $k=3$ and there is a 0 -vertex: a contradiction.

https://daneshyari.com/en/article/6871705

Download Persian Version:

https://daneshyari.com/article/6871705

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: marie-christine.costa@ensta-paristech.fr (M.-C. Costa), christophe.picouleau@cnam.fr (D. de Werra), dominique.dewerra@epfl.ch (C. Picouleau).
 http://dx.doi.org/10.1016/j.dam.2015.11.007
 0166-218X/© 2015 Elsevier B.V. All rights reserved.

