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a b s t r a c t

We present a natural wireless sensor network problem, which we model as a probabilistic
version of the min dominating set problem (called probabilistic min dominating set).
We first show that calculation of the objective function of this general probabilistic
problem is #P-complete. We then introduce a restricted version of probabilistic min
dominating set and show that, this time, calculation of its objective function can be
performed in polynomial time and that this restricted problem is ‘‘just’’ NP-hard, since it
is a generalization of the classical min dominating set. We study the complexity of this
restricted version in graphs where min dominating set is polynomial, mainly in trees and
paths and then we give some approximation results for it.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction: wireless sensor networks and probabilistic dominating set

Very frequently, in wireless sensor networks [37], one wishes to identify a subset of sensors, called ‘‘master’’ sensors,
that will have a particular role in messages transmission, namely, to centralize and process messages sent by the rest
of the sensors, called ‘‘slave’’ sensors, in the network. These latter sensors will be only nodes of intermediate messages
transmission, while the former ones will be authorized to make several operations on messages received and will be, for
this reason, better or fully equipped and preprogrammed.

So, the objective for designing such a network is to identify a subset of sensors (themaster sensors) such that, every other
sensor is linked to some sensor in this set. In other words, one wishes to find a dominating set in the graph of sensors. Since
the equipment of master sensors induces some extra cost, if this cost is the same for all master sensors, we have aminimum
cardinality dominating set problem (min dominating set), while if any master sensor has its own cost, we have a minimum
weight dominating set problem.

Sensors can be broken down at any time but, since the network must always remain operational, once a sensor failure
arrives, a new set of master sensors has to be recomputed very quickly (solution from scratch being very costly in time is
proscribed). For simplicity, we deal with master sensors of uniform equipment cost (hopefully, it will be clear later that this
assumption is not restrictive for the model) and we suppose that any sensor, can be broken down with some probability qi
(so, it remains operational, i.e., present in the network, with probability pi = 1 − qi) depending on its construction, proper
equipment, age, etc.
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Following the possible failures, we must be able to propose quickly a new solution that is a dominating set for the sub-
network. Since nodes of the initially computed dominating set (called a priori dominating set) have already been equipped,
we take in a first time, the track of this solution, i.e., the part of the solution in the surviving (present) sub-network. If it
is feasible, then no corrective action is necessary. On the other hand, if the remaining subset is no more a dominating set,
then we have to modify it with recourse (i.e., with an additional cost per elementary modification) in order to obtain a
dominating set of present sub-network. To equip or program a new sensor has a significant cost, because of obligation to
work in emergency. So, the supplementary equipments induced by the recourse will be more expensive.

In this paper we handle such a model for min dominating set, called probabilistic min dominating set. The objective
of which consists of determining an a priori dominating set through a graph G = (V , E) of n sensors, with probabilities
Pr[V ] = (p1, . . . , pn) for sensor performing well. We consider recourse models that take into account the modifications to
the a priori dominating set in order to obtain an a posteriori solution, feasible for the subgraph effectively present. Without
loss of generality, we assume that equipment costs for a sensor selected in the a priori solution are fixed to 1 and equipment
costs for a sensor added in the recourse are fixed to α > 1, for any added sensor. The goal is to minimize the total expected
cost.

2. Preliminaries

The min dominating set problem including stochastic elements has not been very extensively studied. In [1], authors
handle the connected dominating set in graphs where the weights associated to vertices are stochastic. The feasibility of the
solution is not a goal there. In our context, the sensors’ presence is the only stochastic element taken into account, and the
difficulty comes from the fact that an initial solution (an a priori dominating set) does not necessarily remain feasible after
the failure of some of its elements. Such a setting is analogous, for example, to the probabilistic travelling salesman problem
with timewindows inwhich each customer has a probability pi of requiring a service on a given day and an a priori tourmust
be modified for the given day. This problem was studied in [40], following the so-called a priori optimization introduced by
Jaillet for the probabilistic travelling salesman problem in [20,21].

Here, we also use the a priori optimization setting for the min dominating set problem. To our knowledge, it is the first
time that such a recourse model is proposed for the dominating set. Here, we need to obtain a feasible a posteriori solution
for each given subgraph and, for doing this, we need to modify the a priori solution. This context differs from the one of
chance constrained approach for which we cannot modify this a priori solution and where the goal is to propose an a priori
solution that guarantees, with a fixed probability, that the a posteriori solution (obtained without recourse) will be feasible.
Such a model is proposed in [28,4,5] for wireless sensor networks, where sensors can fail: the aim is to assign transmission
powers to the nodes of a wireless sensor network in such a way that connectivity should be guaranteed with a given level
of reliability, while the total cost is minimized. Note that neither a priori optimization, nor chance constrained approach has
ever been applied for the dominating set problem.

The framework of probabilistic combinatorial optimization thatwe adopt in this paperwas introduced by [20,7]. In [2,7–10,
20–23], restricted versions of routing and network-design probabilistic minimization problems (in complete graphs) have
been studied under the robustness model dealt here (called a priori optimization). In [3,11,12,15], the analysis of the proba-
bilisticminimum travelling salesman problem, originally presented in [7,20], has been revisited in order to propose neweffi-
cient resolution. In [16,17], authors introduce a generalization of the probabilistic travelling salesmanwith time constraints
and study two types of recourse. Several other combinatorial problems have been also handled in the probabilistic combi-
natorial optimization framework, with or without recourse, including minimum colouring [32,14], maximum independent
set and minimum vertex cover [30,31], longest path [29], Steiner tree problems [35,36], minimum spanning tree [9,13].

The paper is organized as follows. In the next section, we introduce the probabilistic min dominating set-problem.
We consider 2-stage modification strategies that in the first stage take the track of the a priori solution in the surviving
subgraph and in the second stage, if this track is infeasible, they complete it in some way into a feasible solution. We
establish the expression of the total expected cost associated to probabilistic min dominating set and show that, even
under relatively simple and natural second stage completions (as for example greedily entering some non-dominated
vertices in final solution), the calculation of its objective function is #P-complete. We then focus on a very simple (almost
‘‘silly’’) modification strategy under which probabilistic min dominating set is in NP (Section 3.3). For this version, we
study in Section 4, polynomial cases, in particular when input graphs are paths, cycles or trees and we propose polynomial
time algorithms for these cases. Finally, in Section 5, we give some approximation results for both the cases of identical
sensor probabilities and of distinct probabilities. The main results in Section 4 imply that probabilistic min dominating
set is polynomial in trees with degrees bounded by O(log n) and in general trees assuming identical probabilities. It
remains however open if the problem is polynomial in general trees with distinct vertex-probabilities, which seems to be a
difficult problem. The approximability upper bounds given in Section 5 are quite far from those known for the classicalmin
dominating set problem. For instance, although min dominating set is approximable within ratio O(log n), probabilistic
min dominating set is approximable within ratios ∆ + 1 for the recourse model and ∆ − ln∆, for a simplified version of it
where α = 1, in the case of identical sensors, and within ratio ∆2

/ln∆ when heterogeneous sensors are assumed, where ∆

denotes themaximum degree of the input graph. This might be due to the fact that probabilistic min dominating set (even
in its simplified form) seems to be much harder than its deterministic counterpart.
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