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a b s t r a c t

Trukhanov et al. (2013) used the Russian Doll Search (RDS) principle to effectively
find maximum hereditary structures in graphs. Prominent examples of such hereditary
structures are cliques and some clique relaxations intensively discussed and studied in
network analysis. The effectiveness of the tailored RDS by Trukhanov et al. for s-plex and
s-defective clique can be attributed to their cleverly designed incremental verification
procedures used to distinguish feasible from infeasible structures. In this paper, we clarify
the incompletely presented verification procedure for s-plex and present a new and
simpler incremental verification procedure for s-defective cliques with a better worst-case
runtime. Furthermore, we develop an incremental verification for s-bundle, giving rise
to the first exact algorithm for solving the maximum cardinality and maximum weight
s-bundle problems.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The combinatorial branch-and-bound by Östergård [8] is among the most powerful exact algorithms to identify
maximum cardinality and maximumweight cliques. It follows the Russian Doll Search (RDS) principle originally introduced
by Verfaillie et al. [11] for solving valued constraint satisfaction problems. In the context of graph theory, it is applicable
to find optimal hereditary structures. In particular, Trukhanov et al. [10] solve maximum cardinality s-plex and s-defective
clique problems. These are examples of relaxed cliques, which are hereditary and of interest in social network analysis
(see [9,4]).

Let G = (V , E) be a simple graph with finite vertex set V and edge set E. For any subset S ⊆ V , the vertex-induced
subgraph of S is G[S] = (S, E ∩ (S × S)). A graph property Π is hereditary on induced subgraphs if for any subset S ⊆ V with
G[S] satisfying property Π , any subset S ′

⊂ S, S ′
≠ ∅ induces a subgraph G[S ′

] that satisfies Π . A property Π is nontrivial
if it is true for all G[S] induced by singleton sets S = {i}, i ∈ V and not satisfied by every graph. A property Π is interesting
if there exist graphs G of arbitrary size satisfying Π . Yannakakis [12] has shown that the determination of a maximum
cardinality set S satisfyingΠ , i.e., themaximum cardinalityΠ problem is N P -hard forΠ that are hereditary, nontrivial, and
interesting. In the following, we refer to these properties as the Yannakakis properties. For given vertex weights wi, i ∈ V ,
the maximum weight Π problem seeks for a set S with maximum weight w(S) =


i∈S wi satisfying Π . For hereditary Π ,

the weights can be assumed to be non-negative because otherwise the corresponding vertex can never be in an optimal
solution.
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One prominent example of a structure that satisfies the Yannakakis properties is the clique: A set S ⊆ V is a clique if
G[S] is complete, i.e., all vertices are adjacent. Pattillo et al. [9] show that first-order clique relaxations can be derived from
relaxing the distance, degree, density, or connectivity requirements of cliques. Note that cliques are perfect in the sense
that they have maximum density, their vertices have maximum degree, and pairs of vertices have minimum distance and
maximum connectivity in the induced subgraph. In the following, we formally introduce these graph parameters and define
associated relaxed cliques that can be solved with RDS.

For i, j ∈ V , distG(i, j) is the minimum length of a path in G connecting i and j. For s ≥ 1, S ⊆ V is an s-clique
if distG(i, j) ≤ s for all i, j ∈ S. Note that s-cliques do not fulfill the Yannakakis properties, since they are only weakly
hereditary [9, p. 14]. However, as every s-clique is an ordinary clique in the sth power graph of G, the search for maximum
s-cliques can be performed with any maximum clique algorithm. Therefore, we do not consider s-cliques in the remainder
of the paper.

Let i ∈ V be any vertex and let S ⊆ V be any subset of vertices. The set of vertices adjacent to i is denoted by N(i). The
vertex degree in G of vertex i is |N(i)| and is denoted by degG(i). The minimum vertex degree of G is δ(G) = mini∈V degG(i).
For s ≥ 1, S ⊆ V is an s-plex if δ(G[S]) ≥ |S| − s.

The set E(S) is the set of edges in G with both endpoints in S. For s ≥ 0, S is an s-defective clique if |E(S)| ≥

|S|
2


− s.

A set C ⊂ V is a vertex cut of a connected graph G = (V , E) if G[V \C] is a disconnected graph. Note that any vertex cut C
has at most |V | − 2 elements. The vertex connectivity κ(G) of G is the size of a minimum cardinality vertex cut. For cliques
S, G[S] does not have any vertex cuts, and therefore one defines κ(G[S]) = |S| − 1. A graph is called k-vertex-connected if
its vertex connectivity is k or greater. The local connectivity κG(i, j) of two different and non-adjacent vertices i, j ∈ V is the
minimum size of a vertex cut C disconnecting i and j in G[V \C]. For adjacent vertices i and j, one defines κG(i, j) = ∞. Then,
if G is not a complete graph, κ(G) equals the minimum of κG(i, j) over all pairs of different vertices i, j ∈ V . Two i–j-paths
are called vertex-disjoint if they have no vertices in common except i and j. Menger’s theorem [7] states that the minimum
size of a vertex cut disconnecting i and j is equal to the maximum number of vertex-disjoint paths connecting i and j. Hence,
for non-adjacent vertices i and j, κG(i, j) is the maximum number of vertex-disjoint i–j-paths. For s ≥ 1, S is an s-bundle if
κ(G[S]) ≥ |S| − s.

Note that any (ordinary) clique S is a 1-plex, 0-defective clique, and 1-bundle. For s > 1, every (s − 1)-defective clique
and every s-bundle is an s-plex, but the reverse is generally not true.

A prerequisite of RDS is that the n vertices in V are ordered into a sequence (v1, v2, . . . , vn). Instead of one depth-first
branch-and-bound search, RDS performs n searches. Starting from i = n, the ith search determines a maximum weight
Π set for G[{vi, vi+1, . . . , vn}] with the initial set S = {vi}. In every iteration, i is decreased by 1 so that a sequence of
lower bounds LBn, LBn−1, . . . , LB2, LB1 is computed. These bounds allow an improved pruning compared to single branch-
and-bound searches (see Section 2). At each stage of the RDS search, the current solution P satisfies Π . Moreover, a set of
candidates C with P∪{c} satisfyingΠ for all c ∈ C ismaintained.Whenever P is enlarged, C has to be adjusted, i.e., candidate
vertices not compatiblewith the new set P are removed from C . The testwhether P∪{c} for a candidate vertex c ∈ C satisfies
Π is called the verification procedure.

Trukhanov et al. [10] presented straightforward and incremental verification procedures for s-plex and s-defective clique.
While straightforward procedures are simpler to implement, the incremental verification procedures have a better runtime
complexity.

The contribution of this paper is threefold: First, we clarify the incremental verification procedure for s-plex because the
description in [10] is incomplete. Second, we present a new and simpler incremental verification procedure for s-defective
cliques with a better worst-case runtime complexity. Third, no solution algorithm for s-bundle neither heuristic nor exact
has been presented in the literature. We develop an incremental verification procedure and herewith introduce a first,
RDS-based algorithm for maximum-weight s-bundle.

The remainder of the paper is structured as follows: In Section 2, we briefly summarize RDS and present the new
incremental verification procedures. In Section 3, the effectiveness of the newRDS algorithms is analyzed in a computational
study. Final conclusions are drawn in Section 4.

2. Russian doll search

Algorithm 1 presents RDS for themaximumweightΠ problem in a slightly modified version compared to [10]. Different
strategies for the vertex ordering in Step 1were discussed and analyzed by Trukhanov et al. [10]. For unit weights, they state
that a degree based ordering as suggested by Carraghan and Pardalos [3] turned out to give the best overall performance for
their RDS. Herein, vn is first chosen as a minimum degree vertex. Then, iteratively from i = n− 1 down to 1, the vertex vi is
selected such that vi has minimum degree in G[V \ {vi+1, . . . , vn}].

RDSmaintains n+1 lower bounds: The global bound LB (Step 2) is the weight of the best solution found so far. Moreover,
the n branch-and-bound searches are initiated in the main loop (Steps 3–6). Each search produces a best solution of weight
LBi by calling the procedure FindMaxwhich performs the actual branch-and-bound on G[{vi, . . . , vn}]. The initial candidate
set C is computed in Step 4 using a problem-specific verification procedure.

The Procedure FindMax is called with the candidate set C and the current set P . RDS always keeps C and P such that
P ∪ {c} satisfies Π for each c ∈ C (in the following referred to as consistency). Therefore, if C is empty (Steps 1–4), an
inclusion maximal solution is found and tested for optimality.
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