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a b s t r a c t

We study mechanisms for differential privacy on finite datasets. By deriving sufficient
sets for differential privacy we obtain necessary and sufficient conditions for differential
privacy, a tight lower bound on the maximal expected error of a discrete mechanism and a
characterisation of the optimal mechanism which minimises the maximal expected error
within the class of mechanisms considered.
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1. Introduction

Data privacy has been of interest to researchers for decades [4], but high-profile privacy breaches in recent years, such as
those involving AOL [1] and Netflix [18], have renewed focus on the topic. The movement towards smart metering systems
for electricity, water and other utilities and the greater use of data mining in so-called smart cities and transport have given
rise to further concerns over personal data privacy.

Themost traditional framework for the study of data privacy is that of tabular data. A simplemodel of this type considers
the data to be arranged as individual records within a table, where each record contains entries from some underlying
dataset,whichmaybe continuous or discrete depending on the type of data being studied. Simple anonymisation techniques,
such as removing names and social security numbers (so-called unique identifiers) from the data, have been shown to be
inadequate [19].More sophisticated frameworks such as k-anonymity [19] and ℓ-diversity [15] are also vulnerable to privacy
attacks via the use of appropriate side-information or data from external sources [15,14].

Within the last decade, differential privacy [5] has emerged as a popular framework for research in the field of data
privacy based on its capability to provide a quantifiable basis for privacy preserving data publishing and mining. This is a
probabilistic approach to data privacy in which a suitably randomised version of the correct response to a query is released.
The core idea is founded on the simple premise that the response to a user query should not be too tightly coupled with
any one entry in the table. One widely-adopted implementation of differential privacy for real-valued databases is to add
an appropriate amount of noise sampled from a Laplace distribution to each cell of the database [6].

Much research on differential privacy to date has been completed on real-valued databases [6], although a considerable
body of literature also exists on discrete data [16,3]; in particular some recent work has focused on graph data relevant to
applications in areas such as social networks [13,2].
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Differentially private mechanisms can be divided into two distinct classes: sanitisation based mechanisms; and output
perturbation based mechanisms. Our concern here is with the former class, which first constructs a sanitised version of the
database and then answers queries on this. It has been shown in [11] that if the sanitised database satisfies the requirements
of differential privacy, then any query can be answered on it in a differentially private manner.

In writing this paper, we have two aims: the first is to present a set of new results on the mathematical foundations
of differential privacy for discrete data; the second is to bring the problems in this field to the attention of researchers in
discrete applied mathematics.

We examine differentially private mechanisms for discrete data within the general probabilistic framework described
in our previous paper [11]. As we deal with finite datasets here, many of the measure-theoretic details required for the
more general setting can be suppressed. However, to properly set context, we include the more general definitions here in
Section 2.

Our first results concern an adaptation for discrete data of the exponential mechanism introduced by McSherry and
Talwar. In particular, we consider the problem of sufficient sets for differential privacy for this mechanism. This problem is
motivated by the practical issue of testingwhether or not amechanism is differentially private and arises from the following
simple considerations.

For a sanitisation to be differentially private, certain inequalities (described formally later) must hold on all subsets of the
database space, which can necessitate checking a prohibitively large collection of sets in order to test for differential privacy.
The question of sufficient sets asks whether it is sufficient for the differential privacy condition to hold on a collection of
these subsets for it to hold on all subsets.We can therefore reduce theworkload required to check that amechanism satisfies
differential privacy. In Section 3, we present results characterising sufficient sets for the discrete exponential mechanism.
We then use these to give necessary and sufficient conditions for differential privacy for this mechanism.

Amajor concern of privacy research is the trade-off between privacy and accuracy. For the current setting, in the absence
of a given metric on the dataset, we measure the error of a sanitisation using hamming distance; in Theorem 5 we derive a
tight lower bound on the maximal expected error of a discrete exponential mechanism.

In Section 4 we consider a seemingly unrelated approach to database sanitisation: product sanitisations. We show that
these are in fact equivalent to the discrete exponential mechanism constructed using the hamming distance and, building
on results in [11], we characterise differential privacy and the error for these in Theorems 8 and 9 respectively. Finally in
Theorem 10 we provide a characterisation of the optimal product sanitisation mechanism, which minimises the maximal
expected error within the class of product sanitisations (and hence within the class of discrete exponential mechanisms).
Concluding remarks are given in Section 5.

1.1. Related work

Before the advent of differential privacy, Fienberg examined the use of data swapping and cell suppression for privacy
protection on categorical data [9]. Dwork then presented the notion of differential privacy in [5], and its limitations were
discussed by Dankar in [7], including its applicability to categorical data.

Dwork’s work was closely followed by McSherry and Talwar who proposed the exponential mechanism in [16]. An
instantiation of this was used by Hardt and Talwar [10] in examining the geometry of differential privacy. Mohammed
made use of the exponential mechanism for releasing count queries in [17,3], while a more recent contribution has looked
at differential privacy on counts using a combination of the Laplace and exponential mechanisms [21].

2. Preliminaries

2.1. Database model

We consider a finite data set D with (m + 1) elements (m ≥ 1). A database d with n rows drawn from this data set is
represented by a vector d = (d1, . . . , dn) ∈ Dn. D is equipped with a σ -algebra, in this case the power set 2D and Dn inherits
the product σ -algebra, 2Dn

. We are therefore considering all subsets of D and Dn.
We will consider hamming distance on Dn. Recall that the hamming distance, h : Dn

×Dn
→ {0, 1, . . . , n}, between two

databases is the number of rows on which they differ:

h(d, d′) = |{i : di ≠ d′

i}|. (1)

Definition 1 (Neighbours). Two databases d, d′
∈ Dn are said to be neighbours, written d ∼ d′ if h(d, d′) = 1.

Informally, two databases are neighbours if they differ on exactly one row.

2.2. Query model

We make use of the generalised query model introduced in [11], adapted to the discrete setting. A query Q : Dn
→ EQ

outputs a response in EQ , the structure of which is not specified (it may be numeric, categorical, functional, etc.). EQ is,
however, equipped with a σ -algebra AQ . We require that all queries be measurable, which is trivial in this setting since
Q−1(A) ⊆ Dn for all A ∈ AQ .
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