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a b s t r a c t

The sports elimination problem askswhether a teamparticipating in a competition still has
a chance towin, given the current standings and the remainingmatches to be played among
the teams. This problem can be viewed as a graph labelling problem, where arcs receive
labels that contribute to the score of both endpoints of the arc, and the aim is to label the
arcs in away that each vertex obtains a score not exceeding its capacity.We investigate the
complexity of this problem in detail, using amultivariate approach to examine how various
parameters of the input graph (such as the maximum degree, the feedback vertex/edge
number, and different width parameters) influence the computational tractability. We
obtain several efficient algorithms, as well as certain hardness results.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Motivation

Imagine we are in the middle of an ice-hockey1 season. Each participating team has currently a certain score and still
some matches to play. Can our favorite team t0 become a winner of the season? More precisely, given the current scores
and the set of remaining matches, is it possible that these matches end in such a way that our team will finish with the
maximum score among all teams? If the answer is no, our team is said to be eliminated. This is a question that occupies not
only players, coaches and managers of teams, but also many sports fans. It has also attracted quite a lot of attention from
mathematicians and computer scientists. Papers [1,22] use integer linear programming to solve this problem, but we shall
concentrate more on combinatorial approaches, see [4,10–12,15,16,20,23,24].

1.2. Formulation of the problem

Let us suppose that the rules of the game define the set of outcomes of a match as

S = {(α0, β0), (α1, β1), . . . , (αk, βk)}.

This formalismcorresponds to situationswhere eachmatchhas a ‘home’ teamand an ‘away’ team, and it can end in any of the
k+1 ways with the home team getting αi points and the away team βi points. For example, S = {(0, 1), (1, 0)} for baseball,
as this game does not allow draws, and a winning team gets 1 point. Basketball, where the winning team gets 2 points, and
both teams in amatch that ends in a draw are awarded 1 point, has S = {(0, 2), (1, 1), (2, 0)}. European football differs from
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1 The reader may substitute any game he or she likes.
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basketball in that the winner gets 3 points, so S = {(0, 3), (1, 1), (3, 0)} for European football. Examples of other games are
given by Kern and Paulusma [16].

A polynomial-time reduction2 provided also by the same authors [16] showed that we can restrict ourselves to the case
where

α0 = 0, α1 = 1 < α2 < · · · < αk and β0 > β1 > · · · > βk−1 ≥ 1, βk = 0. (1)

The set of outcomes fulfilling (1) is called normalized. Throughout the paper we will assume S to be normalized.
An instance of the Generalized Sports Elimination problem with the set S of outcomes (gse(S) for short) can be de-

scribed by a triple (T , w, M). We let T = {t0, t1, . . . , tn} represent the set of teams participating in the competition. The
function w : T → R defines current scores and M : T × T → N the number of remaining matches between teams of T .

By a (t, t ′)-match for some t, t ′ ∈ T wemean a match played between t and t ′ such that t is the home team and t ′ is the
away team. The question is whether it is possible that all the remaining matches end in such a way that team t0 will have
the maximum score among all teams. More precisely, given the set of outcomes S, the problem gse (S) is defined as follows.

Generalized Sports Elimination for S:
Instance: A triple (T , w, M) as described above.
Question: Can a final score vector s : T → R be reached such that s(t0) ≥ s(ti) for each ti ∈ T ?

If the answer is yes, we say that team t0 is not eliminated, otherwise t0 is eliminated. Observe that we can suppose that
our team t0 has already played all its matches, and in each one it obtained the maximum possible score, so its final standing
is w(t0) points. (If in reality this is not the case, we can modify the values of w accordingly).

An instance (T , w, M) of gse(S) can quite naturally be represented by a directed multigraph G = (V , A) with vertex ca-
pacities c : V → R. The vertex set V = {v1, . . . , vn} of G corresponds to the teams T \ {t0}, and arcs (vi, vj) ∈ A correspond
to the remaining matches between teams ti and tj. More precisely, the multiplicity of an arc (vi, vj) equals the number of
remaining (ti, tj)-matches. The capacity of a vertex vi ∈ V is equal to c(vi) = w(t0) − w(ti), and it represents the number
of points that team ti can still win so as not to overcome team t0. It is easy to see that gse(S) is equivalent to the following
problem that we call Arc Labelling with Capacities for S, or alc(S) for short.

Arc Labelling with Capacities for S = {(α0, β0), . . . , (αk, βk)}:
Instance: A pair (G, c) where G = (V , A) is a directed multigraph and c : V → R is a vertex capacity function.
Question: Does there exist an assignment p : A→ {0, . . . , k} such that

scrp(v) :=


a=(v,u)∈A

αp(a) +


a=(u,v)∈A

βp(a) ≤ c(v) (2)

holds for each vertex v ∈ V?
We say that p : A→ {0, . . . , k} is a score assignment for G. If p(a) = q for some arc a = (u, v) ∈ A, then we also say that

p assigns the outcome (αq, βq) to the arc a, and that u and v gain αq and βq (resulting) from the arc a, respectively. To keep
the notation simple, instead of p((u, v)) we shall simply write p(uv). The score of some vertex v in p, denoted by scrp(v),
is defined by the left-hand side of Inequality (2); clearly, scrp(v) equals the total points that v gains when all remaining
matches yield the outcome as determined by p. We say that a score assignment p for G is valid with respect to a capacity
function c , if scrp(v) ≤ c(v) for each vertex v ∈ V . Thus, the task in the alc(S) problem is to decide whether a valid score
assignment exists.

Problem alc(S) restricted to instances with graphs G having maximum degree at most ∆ will be denoted by ∆-alc(S).
As the reader can see from the definitions of the problems gse(S) and alc(S), we take the view that the game (in fact,

the set of outcomes S) is fixed, and a different S defines another variant of the elimination problem or of the corresponding
graph labelling problem. As a consequence of this assumption, the size of the set S is a constant. However, to guarantee a
greater insight into the complexity of the algorithms proposed, we sometimes state running times with their dependence
on kmade explicit; in all cases where the dependence on k is not explicit, we assume k to be a fixed constant.

1.3. Previous work

If the rules of the game are such that the winner of a match gets 1 point, the loser gets 0 points and there are no draws
(like in baseball), that is, S = {(0, 1), (1, 0)}, then the elimination problem can easily be solved by employing network flow
theory. Schwartz [23] was the first one to propose such a method; his network has O(n2) vertices, where n is the number of
teams. Another construction with a network containing only O(n) vertices was proposed by Gusfield and Martel [10].

However, it soon turned out that some score allocation rulesmake the elimination problem intractable. Bernholt et al. [4]
proved that gse (S) is NP-complete for the European football systemwhere S = {(0, 3), (1, 1), (3, 0)}. They also mentioned
that this result could be generalized to the rules that award α points to the winner and β points to both teams of a match
ending in a draw, if α > 2β . Kern and Paulusma [15,16] extended this result by classifying all score allocation rules S into

2 The reduction does not change the directed graph underlying the instance (formally defined later on), except for possibly reversing all its arcs.
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