Refining the complexity of the sports elimination problem

Katarína Cechlárová ${ }^{\text {a }}$, Eva Potpinková ${ }^{\mathrm{a}}$, Ildikó Schlotter ${ }^{\text {b,* }}$
a Institute of Mathematics, Faculty of Science, P.J. Šafárik University, Jesenná 5, 04001 Košice, Slovakia
${ }^{\text {b }}$ Budapest University of Technology and Economics, H-1521 Budapest, Hungary

ARTICLE INFO

Article history:

Received 30 January 2014
Received in revised form 8 January 2015
Accepted 13 January 2015
Available online xxxx

Keywords:

Sports elimination problem
Graph labelling
Parameterized complexity
Multivariate complexity analysis

Abstract

The sports elimination problem asks whether a team participating in a competition still has a chance to win, given the current standings and the remaining matches to be played among the teams. This problem can be viewed as a graph labelling problem, where arcs receive labels that contribute to the score of both endpoints of the arc, and the aim is to label the arcs in a way that each vertex obtains a score not exceeding its capacity. We investigate the complexity of this problem in detail, using a multivariate approach to examine how various parameters of the input graph (such as the maximum degree, the feedback vertex/edge number, and different width parameters) influence the computational tractability. We obtain several efficient algorithms, as well as certain hardness results.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Motivation

Imagine we are in the middle of an ice-hockey ${ }^{1}$ season. Each participating team has currently a certain score and still some matches to play. Can our favorite team t_{0} become a winner of the season? More precisely, given the current scores and the set of remaining matches, is it possible that these matches end in such a way that our team will finish with the maximum score among all teams? If the answer is no, our team is said to be eliminated. This is a question that occupies not only players, coaches and managers of teams, but also many sports fans. It has also attracted quite a lot of attention from mathematicians and computer scientists. Papers [1,22] use integer linear programming to solve this problem, but we shall concentrate more on combinatorial approaches, see [4,10-12,15,16,20,23,24].

1.2. Formulation of the problem

Let us suppose that the rules of the game define the set of outcomes of a match as

$$
S=\left\{\left(\alpha_{0}, \beta_{0}\right),\left(\alpha_{1}, \beta_{1}\right), \ldots,\left(\alpha_{k}, \beta_{k}\right)\right\}
$$

This formalism corresponds to situations where each match has a 'home' team and an 'away' team, and it can end in any of the $k+1$ ways with the home team getting α_{i} points and the away team β_{i} points. For example, $S=\{(0,1),(1,0)\}$ for baseball, as this game does not allow draws, and a winning team gets 1 point. Basketball, where the winning team gets 2 points, and both teams in a match that ends in draw are awarded 1 point, has $S=\{(0,2),(1,1),(2,0)\}$. European football differs from

[^0]basketball in that the winner gets 3 points, so $S=\{(0,3),(1,1),(3,0)\}$ for European football. Examples of other games are given by Kern and Paulusma [16].

A polynomial-time reduction ${ }^{2}$ provided also by the same authors [16] showed that we can restrict ourselves to the case where

$$
\begin{equation*}
\alpha_{0}=0, \quad \alpha_{1}=1<\alpha_{2}<\cdots<\alpha_{k} \quad \text { and } \quad \beta_{0}>\beta_{1}>\cdots>\beta_{k-1} \geq 1, \quad \beta_{k}=0 \tag{1}
\end{equation*}
$$

The set of outcomes fulfilling (1) is called normalized. Throughout the paper we will assume S to be normalized.
An instance of the Generalized Sports Elimination problem with the set S of outcomes (GSe(S) for short) can be described by a triple $(\mathcal{T}, w, \mathcal{M})$. We let $\mathcal{T}=\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$ represent the set of teams participating in the competition. The function $w: \mathcal{T} \rightarrow \mathbb{R}$ defines current scores and $\mathcal{M}: \mathcal{T} \times \mathcal{T} \rightarrow \mathbb{N}$ the number of remaining matches between teams of \mathcal{T}.

By a $\left(t, t^{\prime}\right)$-match for some $t, t^{\prime} \in \mathcal{T}$ we mean a match played between t and t^{\prime} such that t is the home team and t^{\prime} is the away team. The question is whether it is possible that all the remaining matches end in such a way that team t_{0} will have the maximum score among all teams. More precisely, given the set of outcomes S, the problem GSE (S) is defined as follows.

Generalized Sports Elimination for S :

Instance: A triple $(\mathcal{T}, w, \mathcal{M})$ as described above.
Question: Can a final score vector $s: \mathcal{T} \rightarrow \mathbb{R}$ be reached such that $s\left(t_{0}\right) \geq s\left(t_{i}\right)$ for each $t_{i} \in \mathcal{T}$?
If the answer is yes, we say that team t_{0} is not eliminated, otherwise t_{0} is eliminated. Observe that we can suppose that our team t_{0} has already played all its matches, and in each one it obtained the maximum possible score, so its final standing is $w\left(t_{0}\right)$ points. (If in reality this is not the case, we can modify the values of w accordingly).

An instance $(\mathcal{T}, w, \mathcal{M})$ of $\operatorname{GSE}(S)$ can quite naturally be represented by a directed multigraph $G=(V, A)$ with vertex capacities $c: V \rightarrow \mathbb{R}$. The vertex set $V=\left\{v_{1}, \ldots, v_{n}\right\}$ of G corresponds to the teams $\mathcal{T} \backslash\left\{t_{0}\right\}$, and $\operatorname{arcs}\left(v_{i}, v_{j}\right) \in A$ correspond to the remaining matches between teams t_{i} and t_{j}. More precisely, the multiplicity of an arc (v_{i}, v_{j}) equals the number of remaining $\left(t_{i}, t_{j}\right)$-matches. The capacity of a vertex $v_{i} \in V$ is equal to $c\left(v_{i}\right)=w\left(t_{0}\right)-w\left(t_{i}\right)$, and it represents the number of points that team t_{i} can still win so as not to overcome team t_{0}. It is easy to see that $\operatorname{GSE}(S)$ is equivalent to the following problem that we call Arc Labelling with Capacities for S, or alc (S) for short.

Arc Labelling with Capacities for $S=\left\{\left(\alpha_{0}, \beta_{0}\right), \ldots,\left(\alpha_{k}, \beta_{k}\right)\right\}$:
Instance: A pair (G, c) where $G=(V, A)$ is a directed multigraph and $c: V \rightarrow \mathbb{R}$ is a vertex capacity function.
Question: Does there exist an assignment $p: A \rightarrow\{0, \ldots, k\}$ such that

$$
\begin{equation*}
\operatorname{scr}_{p}(v):=\sum_{a=(v, u) \in A} \alpha_{p(a)}+\sum_{a=(u, v) \in A} \beta_{p(a)} \leq c(v) \tag{2}
\end{equation*}
$$

holds for each vertex $v \in V$?
We say that $p: A \rightarrow\{0, \ldots, k\}$ is a score assignment for G. If $p(a)=q$ for some arc $a=(u, v) \in A$, then we also say that p assigns the outcome (α_{q}, β_{q}) to the arc a, and that u and v gain α_{q} and β_{q} (resulting) from the arc a, respectively. To keep the notation simple, instead of $p((u, v))$ we shall simply write $p(u v)$. The score of some vertex v in p, denoted by $\operatorname{scr}_{p}(v)$, is defined by the left-hand side of Inequality (2); clearly, $\operatorname{scr}_{p}(v)$ equals the total points that v gains when all remaining matches yield the outcome as determined by p. We say that a score assignment p for G is valid with respect to a capacity function c, if $\operatorname{scr}_{p}(v) \leq c(v)$ for each vertex $v \in V$. Thus, the task in the $\operatorname{ALC}(S)$ problem is to decide whether a valid score assignment exists.

Problem $\operatorname{AlC}(S)$ restricted to instances with graphs G having maximum degree at most Δ will be denoted by $\Delta-\operatorname{Alc}(S)$.
As the reader can see from the definitions of the problems $\operatorname{GSE}(S)$ and $\operatorname{ALC}(S)$, we take the view that the game (in fact, the set of outcomes S) is fixed, and a different S defines another variant of the elimination problem or of the corresponding graph labelling problem. As a consequence of this assumption, the size of the set S is a constant. However, to guarantee a greater insight into the complexity of the algorithms proposed, we sometimes state running times with their dependence on k made explicit; in all cases where the dependence on k is not explicit, we assume k to be a fixed constant.

1.3. Previous work

If the rules of the game are such that the winner of a match gets 1 point, the loser gets 0 points and there are no draws (like in baseball), that is, $S=\{(0,1),(1,0)\}$, then the elimination problem can easily be solved by employing network flow theory. Schwartz [23] was the first one to propose such a method; his network has $O\left(n^{2}\right)$ vertices, where n is the number of teams. Another construction with a network containing only $O(n)$ vertices was proposed by Gusfield and Martel [10].

However, it soon turned out that some score allocation rules make the elimination problem intractable. Bernholt et al. [4] proved that GSE (S) is NP-complete for the European football system where $S=\{(0,3),(1,1),(3,0)\}$. They also mentioned that this result could be generalized to the rules that award α points to the winner and β points to both teams of a match ending in a draw, if $\alpha>2 \beta$. Kern and Paulusma [15,16] extended this result by classifying all score allocation rules S into

[^1]
https://daneshyari.com/en/article/6871983

Download Persian Version:

https://daneshyari.com/article/6871983

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: katarina.cechlarova@upjs.sk (K. Cechlárová), eva.potpinkova@student.upjs.sk (E. Potpinková), ildi@cs.bme.hu (I. Schlotter).
 1 The reader may substitute any game he or she likes.
 http://dx.doi.org/10.1016/j.dam.2015.01.021
 0166-218X/© 2015 Elsevier B.V. All rights reserved.

[^1]: 2 The reduction does not change the directed graph underlying the instance (formally defined later on), except for possibly reversing all its arcs.

