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In this paper, we investigate the complexity of deciding determinism of unary languages. 
First, we give a method to derive a set of arithmetic progressions from a regular 
expression E over a unary alphabet, and establish relations between numbers represented 
by these arithmetic progressions and words in L(E). Next, we define a problem relating 
to arithmetic progressions and investigate the complexity of this problem. Then by a 
reduction from this problem we show that deciding determinism of unary languages is
coNP-complete. Finally, we extend our derivation method to expressions with counting, 
and prove that deciding whether an expression over a unary alphabet with counting 
defines a deterministic language is in �p

2 . We also establish a tight upper bound for the 
size of the minimal DFA for expressions with counting.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

XML (Extensible Markup Language) has important applications in data exchange [1], database [2], etc. XML schema 
languages, e.g., DTD and XML Schema, are used to specify the constraints which XML documents should obey [3]. However, 
designing a correct schema is not an easy job [4,5]. One difficulty is the Unique Particle Attribution (UPA) constraint [6], 
which requires that content models should be deterministic [7,8]. Intuitively, determinism means that a symbol in the 
input word should be matched to a unique position in the regular expression without looking ahead in the word [6,9]. 
For example, A → a∗a is a simple example of a DTD. This is not a correct DTD, because the content model a∗a is not 
deterministic. Consider the word a. Without knowing the length of the word, we do not know that the only symbol a in 
the word should match the first a or the second one in a∗a.

Deterministic expression is defined in a semantic way, without a known simple syntax definition [8]. It is not easy 
for users to understand such kind of expressions. Studying properties of deterministic expressions can help reduce this 
difficulty. Lots of work [8–15] studied properties of deterministic expressions and gave methods to help users write deter-
ministic expressions. Meanwhile, studying properties of deterministic languages is equally important. For example, when 
the user writes a nondeterministic expression E and we know that L(E) is deterministic, we can automatically generate a 
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deterministic expression describing L(E) for the user. However only little progress has been made about determinism of 
languages.

For standard regular expressions, Brüggemann-Klein and Wood [9] showed that the problem, whether a regular lan-
guage defined by a standard regular expression can be described by a standard deterministic expression, is decidable. Bex 
et al. [8], Czerwiński et al. [16], and P. Lu et al. [17] proved that this problem is PSPACE-complete. The problem becomes 
much harder when we consider expressions with counting. Czerwiński et al. [16] also proved that deciding whether a reg-
ular language defined by a regular expression with counting can be described by a standard deterministic expression is
EXPSPACE-complete [16]. Recently Latte et al. [18] showed that whether a regular language defined by a standard regular 
expression can be described by a deterministic expression with counting is in 2-EXPSPACE. And an NL lower bound was 
given there [18,17]. In this paper, we try to show that this problem is coNP-hard, and improve the existing lower bound.

In [19], Gelade et al. showed that for unary languages, deterministic expressions with counting are expressively equiv-
alent to standard deterministic expressions. Hence considering determinism of regular languages described by standard 
expressions over a unary alphabet can give a lower bound for the problem, whether a regular language can be described 
by a deterministic expression with counting. Moreover, in the lower bound proofs of [8] and [16], the alphabet size of 
constructed expressions is at least 4. So it is possible that the complexity of the problem, whether a regular language de-
fined by a standard regular expression over a unary alphabet can be described by a standard deterministic expression, is 
lower than PSPACE. This is our starting point. In the following, unless explicitly stated otherwise, all regular expressions are 
expressions over the alphabet {a}.

Our contributions are listed as follows:

(1) We show that deciding whether a standard expression denotes a deterministic language is coNP-complete. Then we 
conclude that deciding whether a language can be defined by a deterministic expression with counting is coNP-hard.

(2) For any expression E with counting, we show that there is a DFA with less than 2O (|E|) states accepting L(E). It has 
been shown that there exists an expression E with counting such that every DFA accepting this language has at least 
exponential number of states [20,21]. So our upper bound is tight. For the case |�| = 2, there is an expression E such 
that the minimal DFA accepting L(E) has �(22|E|

) states [21].
(3) Using the result in (2), we devise a non-deterministic algorithm to check determinism of languages defined by expres-

sions with counting, and show that the problem, whether an expression with counting denotes a deterministic language, 
is in �p

2 .

The rest of the paper is organized as follows. Section 2 gives some basic definitions and some facts from the number 
theory, which we will use later. We associate a set of arithmetic progressions with a given regular expression in Section 3. 
Section 4 shows the complexity of deciding determinism of unary languages. Section 5 deals with expressions with counting. 
Section 6 gives the conclusion and the future work.

2. Preliminaries

Let � = {a} be an alphabet of symbols. A standard regular expression over � is recursively defined as follows: ∅, ε and 
a are regular expressions; for any two regular expressions E1 and E2, the union E1 + E2, the concatenation E1 E2 and the 
star E∗

1 are regular expressions. For a regular expression E , we denote L(E) as the language specified by E and |E| as the 
size of E , which is the sum of the number of symbol occurrences in E and the number of used operators.

Expressions with counting, denoted by R(#), extend standard expressions by using counting operator: E [m,n] or E [m,∞] , 
where ∞ stands for infinity. Since E∗ = E [0,∞] , we do not consider the star operator in regular expressions in R(#). The size 
of an expression E in R(#), denoted by |E|, is the sum of the number of symbol occurrences, the number of used operators, 
and the lengths of the binary encodings of all counting numbers [19].

To define deterministic regular expressions, we need the following notations. We mark each symbol a in E with a 
different integer i such that each marked symbol ai occurs only once in the marked expression. For example, a∗

1a2 is a 
marking of a∗a. The marking of E is denoted by E . We use E� to denote the result of dropping subscripts from the marked 
symbols. These notations are extended for words and sets of symbols in an obvious way.

Deterministic regular expressions are defined as follows.

Definition 1. (See [9].) An expression E is deterministic, if and only if, for all words uxv, uyw ∈ L(E) where |x| = |y| = 1, if 
x �= y then x� �= y� . A regular language is deterministic if it is denoted by some deterministic expression.

For example, a∗a is not deterministic, since a2, a1a2 ∈L(a∗
1a2). Deterministic regular expressions denote a proper subclass 

of regular languages [9].
A nondeterministic finite automaton (NFA) [22] is a 5-tuple N = (Q , {a}, δ, q0, F ), where Q is a finite set of states, a is 

the input symbol, q0 ∈ Q is the start state, F ⊆ Q is the set of final states, δ : Q × {a} → 2Q is the transition function. The 
size of an NFA N , denoted as |N |, is defined as the number of states of N . An NFA N = (Q , {a}, δ, q0, F ) is in Chrobak 
normal form [23] if the following conditions hold: (1) Q = {q0, q1, . . . , qm} ∪ {q1,0, q1,1, . . . , q1,i1} ∪ {q2,0, q2,1, . . . , q2,i2} ∪
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