Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

2-Approximation algorithm for a generalization of scheduling on unrelated parallel machines

Yossi Azar^a, Jaya Prakash Champati^{b,*}, Ben Liang^b

^a Blavatnik School of Computer Science, Tel-Aviv University, Israel

^b Department of Electrical and Computer Engineering, University of Toronto, Canada

ARTICLE INFO

Article history: Received 23 March 2017 Received in revised form 23 February 2018 Accepted 9 July 2018 Available online xxxx Communicated by Prudence Wong

Keywords: Unrelated machines Makespan Approximation algorithms Scheduling Open cycles

1. Introduction

 k_i for all $j \in J$.

ABSTRACT

In their seminal work [8], Lenstra, Shmoys, and Tardos proposed a 2-approximation algorithm to solve the problem of scheduling jobs on unrelated parallel machines with the objective of minimizing makespan. In contrast to their model, where a job is processed to completion by scheduling it on any one machine, we consider the scenario where each job *j* requires processing on k_j different machines, independently. For this generalization, we propose a 2-approximation algorithm based on the ρ -relaxed decision procedure [8] and open cycles used in [3,2].

© 2018 Published by Elsevier B.V.

is the maximum completion time over all machines. Given $\{k_j\}$ and $\{p_{ij}\}$ for all j and i, our objective is to find a feasible schedule that minimizes the makespan. We formulate the problem \mathcal{P} as an ILP below:

minimize	C _{max}		
subject to	$\sum_{i\in M} x_{ij} = k_j,$	$\forall j \in J$	(1)

$$\sum_{j \in J} x_{ij} p_{ij} \le C_{\max}, \quad \forall i \in M$$
(2)

$$x_{ij} \in \{0, 1\}, \quad \forall i \in M, \forall j \in J.$$
(3)

We note that the above formulation is general and can be used for the case where jobs have placement constraints, i.e., a job *j* can only be processed on a subset of machines. In this case, we assign $p_{ij} = \infty$, for every machine *i* on which the job *j* cannot be processed.

Our motivation for studying \mathcal{P} is the following model for data retrieval in a coded memory storage system [10,7]. A data file *j* is divided into k_j blocks that are encoded into $N_j \ge k_j$ code blocks. Each of the N_j code blocks are stored

Given a schedule, the completion time on a machine i is determined by the sum of processing times of jobs assigned to it. The makespan of the jobs, denoted by C_{max} ,

We consider a system of *m* parallel machines. At time

zero, *n* independent and non-preemptible jobs are given. Let $M = \{1, 2, ..., m\}$ and $J = \{1, 2, ..., n\}$ denote the set of machine indices and job indices, respectively. Each job *j* requires processing on $k_j \le m$ different machines and the processing of the job can be performed independently on

different machines. The processing time required by a job j on machine $i \in M$ is p_{ij} . For each job j and machine $i \in M$, let x_{ij} denote a binary variable such that $x_{ij} = 1$ if job j

is assigned to machine *i*, and $x_{ij} = 0$ otherwise. A schedule is then determined by the set $\{x_{ij} : x_{ij} \in \{0, 1\}, \forall i \in M, \forall j \in J\}$. The schedule is feasible if and only if $\sum_{i \in M} x_{ij} =$

* Corresponding author. E-mail address: jayaprakash.nitw@gmail.com (J.P. Champati).

https://doi.org/10.1016/j.ipl.2018.07.005 0020-0190/© 2018 Published by Elsevier B.V.

on N_j different storage units. A read request for the data file *j* can be served by retrieving any k_j code blocks. Given *m* storage units and *n* data file read requests, the problem of minimizing the total time to retrieve the files from the storage system can be formulated using \mathcal{P} .

For the special case where $k_j = 1$ for all $j \in J$, \mathcal{P} is equivalent to the classical problem of minimizing makespan on unrelated parallel machines, denoted by $R||C_{max}$ [5,6,4,9,8]. Horowitz and Shani [6] provided a fully polynomial time approximation algorithm for any fixed number of unrelated machines. A list scheduling algorithm having $2\sqrt{m}$ approximation ratio was proposed by Davis and Jaffe [4]. Later, Potts [9] proposed a 2-approximation algorithm by solving a relaxed linear program and doing enumeration for the non-integral part of the solution. However, due to the enumeration step, Potts' algorithm has $O(m^{m-1})$ time complexity.

Lenstra, Shmoys, and Tardos (LST) [8] extended the solution approach of Potts by providing a polynomial time algorithm for rounding the fractional solution of the linear program. The LST algorithm is based on finding a ρ -relaxed decision procedure as follows. Given *P*, an instance of $R||C_{max}$, and a deadline *T*, the ρ -relaxed decision procedure outputs 'no' if there is no schedule with makespan at most *T* for an integer relaxation of *P*, else it outputs a schedule with makespan at most ρT for *P*. The LST algorithm finds a 2-relaxed decision procedure and uses a simple binary search to obtain a 2-approximation solution to $R||C_{max}$.

We note that the LST algorithm cannot be directly extended to solve \mathcal{P} . To see this, consider the underlying feasibility problem for finding a ρ -relaxed decision procedure for \mathcal{P} , for a given deadline T. It consists of the constraints in (1), constraints in (2) with C_{\max} replaced by T, and the relaxed constraints $0 \le x_{ij} \le 1$, for all i and for all j. Let r be the number of variables in this feasibility problem, then the number of constraints are 2r + m + n. This is in contrast to the number of constraints r + m + n present in the corresponding feasibility problem for the classical unrelated parallel machines problem [8]. Therefore, the counting argument used in [8] to claim that only m jobs will have non-integral x_{ij} values is not applicable to the feasibility problem at hand.

In this work, we present a 2-approximation solution to \mathcal{P} . Our solution approach closely follows [8] with an exception that we use open cycles in a bipartite graph [3,2] to round the solution of the feasibility problem for \mathcal{P} . For ease of exposition, in Section 2 we first present our solution to a special case of \mathcal{P} , where the processing time of any job is the same on any eligible machine, i.e., the case of identical machines with assignment restrictions. This is then extended in Section 3 to the case of related machines with assignment restrictions. Finally, in Section 4 we detail the additional steps required for solving \mathcal{P} .

2. Identical machines with assignment restrictions

Let \mathcal{P}_l denote the special case of \mathcal{P} , where the processing time of a job j on any machine is either p_j or ∞ . Let M_j denote the set of eligible machines of job j on which its processing time is p_j . Similarly, let J_i denote the set of jobs which have finite processing time on machine *i*. In the following we present a 2-relaxed decision procedure for \mathcal{P}_I .

2.1. 2-relaxed decision procedure

The 2-relaxed decision procedure for \mathcal{P}_l is based on the following feasibility problem.

$$\sum_{i \in M_j} x_{ij} = k_j, \quad \forall j \in J$$

$$\sum_{j \in J_i} x_{ij} p_j \le T, \quad \forall i \in M$$

$$0 \le x_{ij} \le 1, \quad \forall i \in M, \forall j \in J$$

$$x_{ij} = 0, \quad \forall i \notin M_j, \forall j \in J,$$
(4)

for some $T \ge \max_j p_j$. If (4) is not feasible, then there is no schedule for \mathcal{P}_l with makespan at most T. If (4) is feasible, then we round the fractional solution using open cycles followed by a simple matching in a forest graph. We show that the resulting schedule has makespan at most 2Tfor \mathcal{P}_l , thus establishing a 2-relaxed decision procedure for \mathcal{P}_l . In the following we solve (4) by reducing it to a maximum flow problem.

2.1.1. Maximum flow problem

Consider the bipartite graph $G = \{J \cup M, E\}$, where $E = \{(j, i) : j \in J, i \in M_j\}$. Using *G* we construct a flow network \mathcal{N} as follows:

- Introduce a source and add directed edges from the source to all vertices in *J*. Assign capacity k_jp_j to the edge from the source to vertex *j*.
- If (j, i) ∈ E, then direct the edge from j to i and assign capacity p_j to the edge.
- Introduce a sink and add directed edges from all vertices in *M* to the sink. Assign capacity *T* to all these edges.

It is easy to establish that solving the maximum flow problem in \mathcal{N} results in a feasible solution for (4). This is stated in the following proposition.

Proposition 1. For any given T, (4) is feasible if and only if there exists a maximum flow f with value $\sum_{j=1}^{n} k_j p_j$ in \mathcal{N} . Further, if such flow f exists, then the schedule $\{\bar{x}_{ij} = f(j, i)/p_j, \text{ for all } (j, i) \in E\}$ is a solution for (4).

Assuming $n \ge m$, the maximum flow problem in \mathcal{N} can be solved efficiently by a bipartite preflow-push algorithm with run time $O(m^3n)$ [1]. Next, we assume that for a given T a maximum flow f with value $\sum_{j=1}^{n} k_j p_j$ exists in \mathcal{N} . We round the non-integral part of $\{x_{ij}\}$ using open cycles and matching in a forest graph.

2.1.2. Open cycles

We construct an undirected bipartite graph $\bar{G} = \{\bar{J} \cup \bar{M}, \bar{E}\}$, such that $\bar{J} \subseteq J$, $\bar{M} \subseteq M$, and (j, i) is in \bar{E} if and only if $0 < f(j, i) < p_j$ for all $j \in J$ and $i \in M$. A job vertex

Download English Version:

https://daneshyari.com/en/article/6874114

Download Persian Version:

https://daneshyari.com/article/6874114

Daneshyari.com