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We study the scheduling problem of minimizing total load on a proportionate flowshop. 
We consider position-dependent job processing times in the most general way. We show 
that this problem is solved in O (n4) time, where n is the number of jobs. We then extend 
the setting to allow job-rejection, where the scheduler may decide to process only a subset 
of the jobs, and the rejected jobs are penalized. This extension is shown to be solved in 
O (n5) time.

© 2017 Published by Elsevier B.V.

1. Introduction

Scheduling problems with the objective function of 
minimum total load have been rarely studied. This measure 
becomes relevant usually in multi-machine settings, and 
is equivalent to the sum of the largest completion times 
on all the machines. Minimizing total load is justified in 
settings where the cost is a function of the time that the 
machines are busy. In such cases the scheduler tries to fin-
ish the work on all machines as early as possible. When 
focusing on the classical setting of parallel identical ma-
chines, it is clear that total load is independent of the 
job allocation to the machines and of the job-sequence on 
each machine. However, in settings of time-dependent or 
position-dependent job processing times, minimizing total 
load becomes less trivial. Mosheiov [5] studied the prob-
lem of minimizing total load on parallel identical machines 
with time-dependent processing times (linear deteriora-
tion). He proved that the problem is NP-hard, and intro-

* Corresponding author.
E-mail address: msomer@huji.ac.il (G. Mosheiov).

duced and tested a heuristic and a lower bound. Mosheiov 
[7] studied the same machine setting and objective func-
tion with position-dependent processing times (position-
based deterioration). This case was shown to be polyno-
mially solvable in the number of jobs and the number 
of machines. Yu et al. [11] extended the latter model to 
the case that the job processing times are both position-
and machine-dependent. This setting was shown to be 
polynomially solvable as well. Cheng et al. [3] studied a 
similar objective function on a two-stage flowshop with a 
common critical machine in stage one and two indepen-
dent dedicated machines in stage two. Their goal was to 
minimize the weighted sum of machine completion times 
(where, clearly, only stage-two machine completion times 
are considered in the objective function). They proved that 
the problem is strongly NP-hard, but the case of a given 
job-sequence is polynomially solvable.

In this note we study the measure of total load on an 
m-machine proportionate flowshop. In a proportionate flow-
shop, the job processing times are assumed to be machine-
independent. As above, we focus on the case of position-
dependent job-processing time. We allow the processing 
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times to be position-dependent in the most general way. 
In particular, no monotonicity is required: neither increas-
ing processing time (reflecting deterioration or aging), nor 
decreasing processing time (reflecting learning). As men-
tioned, total load refers to the sum of the completion times 
of the last jobs on all the machines of the flowshop. We 
first introduce a polynomial (O (n5)) time solution for this 
problem, where n is the number of jobs. Then, we consider 
a recently published improved procedure for makespan 
minimization (Agnetis and Mosheiov [1]). Using this faster 
procedure, the running time is reduced to O (n4).

In the second part of the paper, we further extend 
this setting to allow job-rejection, a topic which has be-
come popular among scheduling researchers in the last 
decade. In many real-life situations, processing all jobs may 
cause a delay in the completion of orders and may lead 
to tardiness cost. A decision on rejecting some of the jobs 
(either outsourcing them or rejecting them all together) 
becomes reasonable. We refer the reader to the recently 
published survey on this topic of Shabtay et al. [10]. We 
show that this problem, i.e., that of minimizing total load 
plus the rejection cost on a proportionate flowshop with 
general position-dependent processing times is solved in 
O (n6) time. Then, based on the improved procedure men-
tioned above (Agnetis and Mosheiov [1]), the running time 
is shown to be reduced to O (n5).

Section 2 provides the notation and the formulation. In 
Section 3 we introduce the solution to the problem of min-
imum total load. Section 4 contains the solution for the 
extension in which the objective is minimum total load 
plus rejection cost. In Section 5 we show how to reduce 
the above procedures by a factor of n.

2. Formulation

We consider an n-job m-machine proportionate flow-
shop problem. The processing time of job j which is per-
formed in position r on machine i is denoted (in a gen-
eral flowshop) by pijr , i = 1, . . . , m, j, r = 1, . . . , n. In a 
proportionate flowshop, job processing times are machine-
independent, i.e., pijr = p jr , i = 1, . . . , m, j, r = 1, . . . , n. 
The job-position processing times (p jr ) are given by a gen-
eral n × n matrix, and as mentioned, no specific function 
and no monotonicity in r are assumed.

For a given schedule, Cij denotes the completion time 
of job j on machine i; i = 1, . . . , m; j = 1, . . . , n. C (i)

max =
max

{
Cij; j = 1, . . . ,n

}
, i = 1, . . . , m, denotes the comple-

tion time of the last processed job on machine i. The 
objective function is minimizing Total Load, i.e., T L =∑m

i=1 C (i)
max . Using the classical notation for defining schedul-

ing problems, the problem studied here is:

F/pijr = p jr/

m∑
i=1

C (i)
max.

When the option of job-rejection is considered, let e j

denote the rejection cost of job j, j = 1, . . . , n. If the en-
tire set of jobs is denoted by N , let S denote the set of 
scheduled (non-rejected) jobs, and R denote the set of 
the rejected jobs (N = S ∪ R). The Total Rejection cost is 

T R = ∑
j∈R e j . The objective function becomes minimum 

total load and total rejection cost: T L + T R . Thus, the prob-
lem solved in this section is:

F/pijr = p jr/

m∑
i=1

C (i)
max +

∑
j∈R

e j.

3. A polynomial-time solution for minimizing total load

In the classical makespan minimization problem on 
a proportionate flowshop, it is well-known (see e.g., 
Pinedo [9]) that the optimum is sequence-independent. 
The makespan value (i.e., the completion time of the last 
job on machine m) is given by 

∑n
j=1 p j + (m − 1)pmax , 

where pmax is the largest processing time. Note that the 
critical path follows the largest job along all m machines, 
implying that the contribution of this largest job to the 
makespan is mpmax . When general position-dependent 
job processing times are assumed, the largest processing 
time is not known in advance, and is clearly sequence-
dependent. Mosheiov [6] proposed a solution procedure, in 
which all job-positions are tested as being the largest pro-
cessing time. Specifically, in each iteration of the algorithm, 
one of the n2 job-positions is defined as a pseudo-job, and 
its processing time is multiplied by m. At the end of each 
iteration, the resulting schedule is checked, and if feasible 
(i.e., the pseudo-job is indeed the largest), the solution is 
registered as a candidate for being optimal. The best of all 
the feasible schedules is clearly the optimum.

When the objective function is that of total load (∑m
i=1 C (i)

max

)
, an extension of this idea can be employed. 

Assume first that the job sequence is known, and that 
the (actual) job processing time of the job in position 
j is denoted by p( j), j = 1, . . . , n. Assume also that 
the largest processing time is that of the job in posi-
tion l, i.e., pmax = p(l) . Thus, the job sequence is given 
by: p(1), p(2), . . . , p(l)(= pmax), . . . , p(n) . It follows that the 
completion time of the last job on each machine is given 
by:

Machine 1: C (1)
max = ∑n

j=1 p( j);

Machine 2: C (2)
max = ∑n

j=1 p( j) + pmax;

Machine 3: C (3)
max = ∑n

j=1 p( j) + 2pmax;
. . .

Machine m: C (m)
max = ∑n

j=1 p( j) + (m − 1)pmax .

Total load (for a given job sequence) is thus the following:

T L =
m∑

i=1

C (i)
max = m

n∑
j=1

p( j) + (m − 1)m

2
pmax.

As a result, the problem can be formulated as a non-
linear integer program. Let X jr be a binary variable: 
X jr = 1 if job j is assigned to position r, Xij = 0 other-
wise. The program is:
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