
Information Processing Letters 131 (2018) 39–43

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Balanced allocation through random walk

Alan Frieze a,∗,1, Samantha Petti b,2

a Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, United States
b School of Mathematics, Georgia Tech., Atlanta, GA 30313, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 August 2017
Received in revised form 26 November 2017
Accepted 26 November 2017
Available online 28 November 2017
Communicated by B. Doerr

Keywords:
Balanced allocation
Random walk
Cuckoo hashing
On-line algorithms

We consider the allocation problem in which m ≤ (1 − ε)dn items are to be allocated to n
bins with capacity d. The items x1, x2, . . . , xm arrive sequentially and when item xi arrives 
it is given two possible bin locations pi = h1(xi), qi = h2(xi) via hash functions h1, h2. We 
consider a random walk procedure for inserting items and show that the expected time 
insertion time is constant provided ε = � 

(√
log d

d

)
.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

We consider the following allocation problem. We have 
m items that are to be allocated to n bins, where each 
bin has space for d items. The items x1, x2, . . . , xm arrive 
sequentially and when item xi arrives it is given two pos-
sible bin locations pi = h1(xi), qi = h2(xi) via hash func-
tions h1, h2. We shall for the purpose of this paper as-
sume that pi �= qi for i ∈ [m] and that (pi, qi) is otherwise 
chosen uniformly at random from [n]2. This model is ex-
plicitly discussed in Dietzfelbinger and Weidling [2]. Prob-
abilistic bounds on the number of items m so that all m
items can be inserted have been found by Cain, Sanders 
and Wormald [1] and independently by Fernholtz and Ra-
machandran [3].

Algorithmically, if m ≤ d(1 − ε)n where m, n grow arbi-
trarily large and ε > 0 is small and independent of n, then 
[2] prove the following:

* Corresponding author.
E-mail addresses: alan@random.math.cmu.edu (A. Frieze), 

spett3@gatech.edu (S. Petti).
1 Research supported in part by NSF grant DMS0753472.
2 This material is based upon work supported by the National Science 

Foundation Graduate Research Fellowship under Grant No. DGE-1650044.

1. If d ≥ 1 + log(1/ε)
1−log 2 then w.h.p.3 all the items can be 

placed into bins.
2. If d > 90 log(1/ε) then the expected time for a Breadth 

First Search (BFS) procedure to insert an item is at 
most (1/ε)O (log d) .

This model is related to a d-ary version of Cuckoo Hashing 
(Pagh and Rodler [9]) that was discussed in Fotakis, Pagh, 
Sanders and Spirakis [4]. Here there are d hash functions 
and the bins are of size one. This latter paper also uses BFS 
to insert items.

Item insertion in both of these models can also be tack-
led via random walk. For d-ary Cuckoo Hashing, Frieze, 
Mitzenmacher and Melsted [8] and Fountoulakis, Pana-
giotou and Steger [5] gave O ((log n)O (1)) time bounds for 
random walk insertion and more recently Frieze and Jo-
hansson [6] proved an O (1) time bound on random walk 
insertion, for d sufficiently large.

The authors of [2] ask for an analysis of a ran-
dom walk procedure for inserting an item. They ask for 
bounds of O (log 1/ε) insertion time while maintaining 

3 A sequence of events (En, n ≥ 0) is said to occur with high probability 
(w.h.p.) if limn→∞ Pr[En] = 1.

https://doi.org/10.1016/j.ipl.2017.11.010
0020-0190/© 2017 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.ipl.2017.11.010
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:alan@random.math.cmu.edu
mailto:spett3@gatech.edu
https://doi.org/10.1016/j.ipl.2017.11.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2017.11.010&domain=pdf


40 A. Frieze, S. Petti / Information Processing Letters 131 (2018) 39–43

d = O (log 1/ε). While we cannot satisfy these demand-
ing criteria, in this note we are able to establish constant 
expected time bounds with a larger value of d. We first 
describe the insertion algorithm. We say a bin is saturated 
if it contains d items.

Random Walk Insertion: RWI

for i = 1 to m do
begin

Generate pi,qi randomly from [n]
if either of bins pi,qi are not saturated, then assign

item xi arbitrarily to one of them.
if both bins pi,qi are saturated then do

begin
Choose b randomly from {pi,qi}; y → xi .
repeatA

Let x be a randomly chosen item from bin b.
Remove x from bin b and replace it with item y.
Let c be the other bin choice of item x.
y ← x
b ← c.

until bin b is unsaturated.
Place item x in bin b.
end

end

Let ri denote the number of steps in loop A of algorithm 
RWI. Then,

Theorem 1. Let m ≤ (1 −ε)dn. Then for some absolute constant 
M > 0,

E[ri] ≤ 4M

ε2
w.h.p. for i ∈ [m] provided

ε ≥
√

M (log(4d) + 1)

d
. (1)

In the analysis below, we take M = 96. It goes without 
saying that we have not tried to optimize M here.

There are two sources of randomness here. The random 
choice of the hash functions and the random choices by 
the algorithm. The w.h.p. concerns the assignment of items 
to bins by the hash functions and the E[ri] is then the 
conditional expectation given these choices.

2. Graphical description

We use a digraph D ′ to represent the assignment of 
items to bins. Each bin is represented as a vertex in D ′ and 
item i is represented as a directed edge (pi, qi) or (qi, pi)

that is oriented toward its assigned bin. We say a vertex 
is saturated if its in-degree in D ′ is d. As the algorithm is 
executed, we in fact build two digraphs D and D ′ simulta-
neously.

We now describe the insertion of an item in terms of 
D, D ′ . Let x and y denote the two randomly selected bins 
for an item. We place a randomly oriented edge between 
x and y in D . If x and y are unsaturated in D ′ , then we 
place the edge in the same orientation as in D . If x or y

is saturated in D ′ , then we place the edge in D ′ according 
to the algorithm RWI, which may require flipping edges 
in D ′ . This is repeated for all items. Note that D is a ran-
dom directed graph with (1 − ε)dn edges. The undirected 
degree of each vertex in D is the same as in D ′ . However, 
the directed degrees will vary. Let Dt and D ′

t denote the 
respective graphs after t edges have been inserted.

We compute the expected insertion time after (1 −ε)dn
items have been added by analyzing D ′ . The expected time 
to add the next item is equal to the expected length of 
the following random walk in D ′ . Select two vertices x
and y. If either is unsaturated no walk is taken, so we 
say the walk has length zero. Otherwise, pick a vertex at 
random from {x, y} and walk “backwards” along edges ori-
ented into the current vertex until an unsaturated vertex 
is reached. We call this the “replacement walk.” As usual 
in a random walk, vertices may be revisited during a re-
placement walk. On the other hand, edges are crossed in 
a direction opposite to their orientation, which is unusual. 
Note also that after a vertex is visited for the second time, 
two of its edges will have the opposite direction to what 
they had originally. This small observation is crucial for the 
analysis below.

Let G denote the common underlying graph of D, D ′
obtained by ignoring orientation. In order to compute the 
expected length of the replacement walk, we analyze the
structure of the subgraph G S of G induced by a set S
which contains all saturated vertices in G . In Section 3, 
we show that the expected number of connected compo-
nents of size k among saturated vertices decays geometri-
cally with k and that each component is a tree or contains 
precisely one cycle. In Section 4 we show that since the 
components of G S are sparse and the number of compo-
nents decays geometrically with size, the expected length 
of a replacement walk is constant.

3. Saturated vertices

In this section we describe the structure induced by 
G on the set of saturated vertices. Throughout this sec-
tion, our observations rely only on information about the 
digraph D , and therefore are independent of the RWI al-
gorithm. First we define a set S that is a superset of all 
saturated vertices.

Definition 1. Let A be the set of vertices of D with in-
degree at least d − 1 in D and T0 = ∅. Given A, T0, . . . Tk , 
let Tk+1 be all the vertices of V \ (A ∪ T0 ∪ T1 ∪ · · · ∪ Tk)

with at least two neighbors in A ∪ T0 ∪ T1 ∪ · · · ∪ Tk . Let 
T = ⋃

Ti and S = A ∪ T .
Alternatively, let S be the smallest set of vertices that 

contains A and is closed under adding nodes that have two 
neighbors in S .

Lemma 2. The set S defined above contains all saturated ver-
tices.

Proof. We prove the statement by induction on St the set 
of saturated vertices after the t-th edge is added. Since 
S0 = ∅, S0 ⊆ S vacuously. Assume St ⊆ S . Note that the 



Download English Version:

https://daneshyari.com/en/article/6874239

Download Persian Version:

https://daneshyari.com/article/6874239

Daneshyari.com

https://daneshyari.com/en/article/6874239
https://daneshyari.com/article/6874239
https://daneshyari.com

