An improved algorithm for computing a shortest watchman route for lines

Xuehou Tan ${ }^{\text {a,b,*, }}$, Bo Jiang ${ }^{\text {a }}$
${ }^{\text {a }}$ School of Information Science and Technology, Dalian Maritime University, Linghai Road 1, Dalian, China
${ }^{\mathrm{b}}$ School of Information Science and Technology, Tokai University, 4-1-1 Kitakaname, Hiratsuka 259-1292, Japan

ARTICLE INFO

Article history:

Received 13 September 2016
Received in revised form 16 November 2017
Accepted 27 November 2017
Available online 1 December 2017
Communicated by R. Uehara

Keywords:

Computational geometry
Watchman route problem
Dynamic programming
Shortest paths

Abstract

We give a new algorithm to compute a shortest watchman route for a set \mathcal{L} of n nonparallel lines in the plane. A watchman route for \mathcal{L} is a closed curve contained in the union of the lines of \mathcal{L} such that every line of \mathcal{L} is visited by the route. We show that the lines visited by the shortest watchman route can be specified in order, and then present an $O\left(n^{6}\right)$ time algorithm using dynamic programming technique. Our result significantly improves upon the previous $O\left(n^{8}\right)$ time bound.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Shortest paths are of fundamental importance in computational geometry, robotics and autonomous navigation. The watchman route problem, introduced by Chin and Ntafos [1], is to find a shortest route (closed curve) in a given simple polygon P such that every point of P is visible from at least one point of the route. This problem is quite interesting, because it deals with both the visibility and metric information [6].

The first polynomial-time $\left(O\left(n^{4}\right)\right)$ solution was given by Tan et al. $[8,9]$ for the watchman route problem where a starting point on the boundary of P is given. This result has recently been improved to $O\left(n^{3}\right)$ [3,10]. The watchman route problem without giving any starting point can be solved in $O\left(n^{4}\right)$ time [7,10]. The solution to the watchman route problem has also been used to compute the shortest traveling salesman routes for n non-parallel lines in the plane [5]. The watchman route and related problems

[^0]are usually characterized by the feature that the order of geometric objects to be visited is given or can be computed [3,6,10].

Recently, Dumitrescu et al. [4] considered the following variant: Given a set \mathcal{L} of n non-parallel lines in the plane, one wants to find a shortest watchman route for \mathcal{L} such that the route is contained in the union of the lines of \mathcal{L} and it visits all lines (see Fig. 1). For this watchman route problem for lines, they gave an $O\left(n^{8}\right)$ time algorithm using dynamic programming technique, which is mainly based on an ordering of the vertices of the solution route [4]. Since its complexity is high, whether a faster algorithm can be given is left as an open problem. Note also that the watchman route problem for n line segments is $N P$-hard [4].

In this paper, we present an improved solution to the watchman route problem for lines. By investigating the order of lines in which the given lines are visited by a shortest watchman route, we develop a new dynamic programming algorithm with running time $O\left(n^{6}\right)$. Our result gives a significant improvement upon the previous $O\left(n^{8}\right)$ time solution.

Fig. 1. Two solutions to $M C H$ consist of three vertices (a) and four vertices (b) respectively; both yielding the same solution to WRL (drawn in bold).

2. Main result

For a set \mathcal{L} of n non-parallel lines in the plane, denote by $\mathcal{A}(L)$ the arrangement of \mathcal{L}. Since there exist two non-parallel lines in \mathcal{L}, the arrangement $\mathcal{A}(L)$ is clearly connected. We also consider $\mathcal{A}(L)$ as a planar graph whose vertices are the vertices of the arrangement $\mathcal{A}(L)$ and whose edges connect successive vertices on the lines in \mathcal{L}. Denote by $\mathcal{A}_{w}(\mathcal{L})$ the weighted graph of $\mathcal{A}(L)$, where the weight of an edge is the Euclidean distance between its two vertices. For two different vertices x, y of $\mathcal{A}(L)$, represent by $\pi(x, y)$ a shortest path connecting x and y in $\mathcal{A}_{w}(\mathcal{L})$; the length of $\pi(x, y)$ is denoted by $|\pi(x, y)|$.

The watchman route problem for lines has been solved by relating it to the computation of the minimum convex hull defined on $\mathcal{A}(L)$ [4].

The watchman route problem for lines in the plane (WRL): Given a set \mathcal{L} of non-parallel lines in the plane, compute a shortest watchman route for \mathcal{L} in the graph $\mathcal{A}_{w}(\mathcal{L})$.
The minimum convex hull problem (MCH): Given a set \mathcal{L} of non-parallel lines in the plane, compute a minimum length cyclic sequence $\left(v_{1}, \ldots, v_{k}, v_{1}\right)$ of vertices of $\mathcal{A}_{w}(\mathcal{L})$ in convex position, such that every line in \mathcal{L} intersects the convex polygon ($v_{1}, v_{2} \ldots, v_{k}$), where the length of $\left(v_{1}, \ldots, v_{k}, v_{1}\right)$ is defined as $\sum_{i=1}^{k}\left|\pi\left(v_{i}, v_{i+1}\right)\right|$ with $v_{k+1}=v_{1}$. For simplicity, we also refer to the convex polygon $\left(v_{1}, \ldots, v_{k}\right)$ as the solution to MCH.

It has been known that a solution to $M C H$ is actually a solution to $W R L$ [4]. There may be multiple solutions to $M C H$ of the same length. For the instance given Fig. 1, two solutions to MCH are shown, and the same solution to $W R L$ produced by them is drawn in bold.

Lemma 1. ([4]) For a set \mathcal{L} of non-parallel lines in the plane, a solution to MCH yields a solution to WRL.

The important observation made in this paper is that the lines visited by any solution to $M C H$ can be specified in order. Assume that L is a non-vertical line of \mathcal{L}. Let $L^{+}\left(L^{-}\right)$be the half-plane bounded by L and above (be-

Fig. 2. An ordering of $K_{1}(u), K_{2}(u), \ldots, K_{n-1}(u)$ on L.
low) the line L. Assume that u is a vertex on L in $\mathcal{A}(L)$, and there are no lines that are parallel to and below L^{+} (above L^{-}), i.e., there exists a watchman route in $L^{+}\left(L^{-}\right)$. Denote by $\operatorname{MCH}\left(u^{+}\right)\left(M C H\left(u^{-}\right)\right)$the minimum convex hull problem restricted to $L^{+}\left(L^{-}\right)$and with the starting point u (i.e., the resulting convex hull must have vertex u). Let $R_{\text {opt }}\left(u^{+}\right)\left(R_{\text {opt }}\left(u^{-}\right)\right)$be a solution to MCH $\left(u^{+}\right)$ (MCH(u-)).

In the following, we shall simply denote $\operatorname{MCH}\left(u^{+}\right)$by $\operatorname{MCH}(u)$ and $R_{\text {opt }}\left(u^{+}\right)$by $R_{\text {opt }}(u)$. For a line K, we shall denote by $K(u)$ the half-plane that is bounded by the portion of K inside L^{+}and does not contain u, see Fig. 2. Then, $R_{\text {opt }}(u)$ visits $K(u)$ in one of the following ways.

1. It makes a crossing contact with $K(u)$, if $R_{\text {opt }}$ contains points in either half-plane bounded by K. For the instance given in Fig. 2, $R_{\text {opt }}$ makes crossing contacts with $K_{1}(u), K_{3}(u)$ and $K_{5}(u)$.
2. In the case that $R_{\text {opt }}(u)$ does not go across $K(u)$, it comes into K at a vertex of $\mathcal{A}(L)$, and then, either goes away from that vertex immediately or walks a while along K and goes away from another vertex on K. The former is called a reflection contact with $K(u)$, and the latter is called a tangential contact, which can be considered as a degenerated reflection. In Fig. 2, $R_{\text {opt }}(u)$ makes reflection contacts with $K_{2}(u)$ and $K_{6}(u)$ and a tangential contact with $K_{4}(u)$.

https://daneshyari.com/en/article/6874241

Download Persian Version:

https://daneshyari.com/article/6874241

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: tan@wing.ncc.u-tokai.ac.jp (X. Tan).

