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In the gas station problem we want to find the cheapest path between two vertices of an 
n-vertex graph. Our car has a specific fuel capacity and at each vertex we can fill our car 
with gas, with the fuel cost depending on the vertex. Furthermore, we are allowed at most 
� stops for refuelling.
In this short paper we provide an algorithm solving the problem in O (�n2 +n2 log n) steps 
improving an earlier result by Khuller, Malekian and Mestre.

© 2017 Published by Elsevier B.V.

1. Introduction

There are numerous problems in the literature in which 
the task is to optimise the travel from one location to 
another or to optimise a tour visiting a specific set of lo-
cations. The problems usually differ in the restrictions that 
we may put into the way we can travel as well as in the 
notion of what an ‘optimal’ route means. Of course one 
could theoretically check all possible ways to travel and 
pick out the optimal one. However we care about finding 
the optimal route in a much quicker way as usually check-
ing all possibilities is impractical.

One of the most widely known abstractions of travel 
optimisation problems is that of the shortest paths which 
although very general in their definition, fail to take into 
consideration most of the aspects that arise in real world. 
Perhaps one of their more practical generalisations is the 
‘gas station problem’, introduced by Khuller, Malekian and 
Mestre in [2]. Out of the infinitude of possible parameters 
it includes one more central aspect of the travelling agent, 
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that of its limited fuel capacity and fuel consumption dur-
ing the travelling. As it is the case for the shortest paths 
problem, it is also with the gas station problem that it can 
be used in a variety of problems that are not directly re-
lated with travelling optimisation

The setting of the gas station problem is as follows:
We are given a complete graph G = (V , E), two specific 

vertices s, t of G and functions d : E → R
+ and c : V →R

+ . 
Finally we are also given positive numbers U and �.

Each vertex v of G corresponds to a gas station and the 
number c(v) corresponds to the cost of the fuel at this sta-
tion. Given an edge e = uv of G , the number d(e) = d(u, v)

corresponds to the distance between the vertices u and v , 
or what is essentially equivalent, to the amount of gas 
needed to travel between u and v . Finally, the number U
corresponds to the maximum gas capacity of our car.

Our task is to find the cheapest way possible to move 
from vertex s to vertex t if we are allowed to make at most 
� refill stops.

We make two further assumptions:
Our first assumption concerns the function d : E → R

+ . 
We will follow the natural assumption that it satisfies the 
triangle inequalities. I.e.

d(u, v) + d(v, w) � d(u, w) for every u, v, w ∈ V .
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Our second assumption concerns the amount of fuel 
that we have initially in our car. We will make the as-
sumption that we start with an empty fuel tank. We also 
consider the filling in our tank at this vertex as one of the 
refill stops. This does not make much difference. Indeed
suppose that initially we have an amount g of gas. Instead 
of solving the gas station problem for the graph G , we 
modify this graph by adding a new vertex s′ . We define 
the new distances by d(s′, v) = U − g + d(s, v) for every 
v ∈ V (G). I.e. the vertex s′ has distance U − g from s and 
furthermore the shortest path from s′ to any other vertex 
v of G is via s. We also define c(s′) = 0. It is then obvious 
that if we start from s′ , we should completely fill our tank 
and then move to vertex s. The only difference is that we 
are now allowed one fewer refill stop than before. So solv-
ing the gas station problem for G starting from s with g
units of gas is equivalent to solving the gas station prob-
lem for G ′ starting from s′ with no gas.

An algorithm solving the gas station problem that runs 
in O (�n2 log n) was introduced by Khuller, Malekian and 
Mestre in [2]. The main result of our article is the follow-
ing:

Theorem 1. Given an n vertex graph G, there is an algorithm 
which solves the gas station problem with � stops in at most 
O (�n2 + n2 log n) steps.

We should point out that the algorithm in [2] makes 
similar assumptions to ours. It explicitly mentions the as-
sumption that the car starts with an empty fuel tank. It 
does not mention explicitly the assumption that the dis-
tances in the graph need to satisfy the triangle inequalities. 
However it does use it implicitly in its Lemma 1. (See the 
proof of our Lemma 3 which makes explicit why we do 
indeed need the distances to satisfy the triangle inequali-
ties.)

We will prove Theorem 1 in the next section. In a cou-
ple of instances our algorithm will call some familiar al-
gorithms with known running time. The interested reader 
can find more details about those algorithms in many al-
gorithms or combinatorial optimisation books, for example 
in [1].

2. Proof of Theorem 1

We start by ordering all edge distances. Since there are 
O (n2) edges, this can be done in O (n2 log n) steps, using 
e.g. heapsort. In fact we will not use the full ordering of 
the edge distances. What we will need are the following 
local orderings:

For each v ∈ V we create an ordering v1, . . . , vn−1 of 
the vertices of V \ {v} such that d(v, vi) � d(v, v j) for 
i � j. We will call this the local edge ordering at v . (Note 
that this definition might be a bit misleading as the local 
edge ordering at v is an ordering of the vertices of V \ {v}. 
Of course, this gives an ordering of the edges incident to v
and this is where it gets its name from.)

Of course all of these local orderings can also be com-
puted in O (n2 log n) steps.

So it is enough to show how to solve the gas station 
problem in O (�n2) time assuming that the edges are al-
ready ordered by distance.

The fact that the edge distances satisfy the triangle in-
equalities is needed to prove the following simple lemma:

Lemma 2. There is an optimal route during which we fill our car 
with a positive amount of gas at every station (apart from the 
last one).

Proof. Amongst all optimal routes, pick one passing
through the smallest number of vertices. Suppose that it 
passes through vertices v1, v2, . . . , vk in that order. We 
definitely need to fill our car with gas at v1 as we start 
with an empty tank. Suppose now for contradiction that 
in this optimal path we do not fill our car at station vi

for some 1 < i < k. Then, instead of moving from vi−1 to 
vi+1 through vi , we could have moved to it directly. This 
is indeed possible as

d(vi−1, vi+1) � d(vi−1, vi) + d(vi, vi+1)

and it is a contradiction as we assumed that our optimal 
path is both optimal and minimal. �

Lemma 2 is needed to prove the following slightly mod-
ified lemma from [2]. Even though it looks completely ob-
vious, we nevertheless provide a detailed proof in order to 
make explicit the need for using Lemma 2 and thus to re-
quire that the distances in the graph satisfy the triangle 
inequalities. Lin [3] also makes explicit this requirement. 
Essentially the same lemma also appears in [4].

Lemma 3. There is an optimal route, say passing through ver-
tices v1, v2, . . . , vk in that order, where v1 = s and vk = t, for 
which an optimal way to refill the tank is as follows:

(i) For 1 � i � k − 2, if c(vi) < c(vi+1), then at station vi we 
completely fill our tank.

(ii) For i = k − 1, if c(vi) < c(vi+1), then at station vi we fill 
the tank with just enough gas in order to reach vertex vi+1
with an empty tank.

(iii) For 1 � i � k − 1, if c(vi) � c(vi+1) then at station vi we 
fill the tank with just enough gas in order to reach vertex 
vi+1 with an empty tank.

Proof. Pick an optimal route as given by Lemma 2.
Suppose that at some point during travelling through 

this optimal route we reach vertex vi , with 1 � i � k − 2
and suppose that c(vi) < c(vi+1). By Lemma 2 we have 
filled some gas at station vi+1. If we did not fully filled 
our gas at station vi then we could have reduced our cost 
by filling more gas at vi and less at vi+1, a contradiction. 
So at vi we definitely must completely fill our tank.

If we reach vk−1 then of course we fill the car with just 
enough gas in order to reach vk with our tank completely 
empty.

Finally suppose that at some point during travelling 
through this optimal route we reach vertex vi , with 1 �
i � k − 1 and c(vi) � c(vi+1). Suppose we fill the car at vi
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