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Indeterminate strings have received considerable attention in the recent past; see for ex-
ample [1] and [3]. This attention is due to their applicability in bioinformatics, and to the 
natural correspondence with undirected graphs. One aspect of this correspondence is the 
fact that the minimum alphabet size of indeterminates representing any given undirected 
graph equals the size of the minimal clique cover of this graph. This paper first consid-
ers a related problem proposed in [3]: characterize �n(m), which is the size of the largest 
possible minimal clique cover (i.e., an exact upper bound), and hence alphabet size of the 
corresponding indeterminate, of any graph on n vertices and m edges. We provide improve-
ments to the known upper bound for �n(m) in section 3.3. [3] also presents an algorithm 
which finds clique covers in polynomial time. We build on this result with a heuristic for 
vertex sorting which significantly improves their algorithm’s results, particularly in dense 
graphs.

© 2018 Elsevier B.V. All rights reserved.

1. Background

Given an undirected graph G = (V , E), we say that c ⊆ V is a clique if every pair of distinct vertices (u, v) ∈ c × c
comprises an edge—that is, (u, v) ∈ E . A vertex u is covered by c if u ∈ c. Similarly, edge (u, v) is covered by c if {u, v} ⊆ c; 
we will often write (u, v) ∈ c instead, a convenient abuse of notation. Similarly, instead of saying “the edges incident on v”, 
we will say “v ’s edges”.

C = {c1, c2, · · · , ck} is a clique cover of G of size k if each ci is a clique, and furthermore every edge and vertex in G is 
covered by at least one such ci . Note that there are several variants of this definition. In some contexts, it is only necessary 
to cover the edges; in others, only the vertices. We consider the case in which both edges and vertices must be covered, 
and we will call these three variations the edge cover, vertex cover, and complete cover respectively. Whenever we say “clique 
cover” or “cover” without specifying the type, it should be assumed that we are talking about a complete cover.

The neighborhood of a vertex v , denoted Nv is the set of all vertices adjacent to v; that is, u ∈ Nv if (u, v) ∈ E . Every 
u ∈ Nv is a neighbor of v . The degree of v , denoted dv , is the cardinality of Nv ; dv = |Nv |. We denote by Rv the set of 
vertices which are neither v nor in Nv . We say that v is isolated, or that v is a singleton, if dv = 0.

The clique cover problem is the problem of algorithmically finding a minimal clique cover, and is NP -hard. The decision 
version, finding a clique cover whose cardinality is below a given value (or determining that no such cover exists) is 
NP-complete.
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Fig. 1. �8(m) and �7(m). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Remark 1. If a graph has no singletons, then any edge clique cover is also a complete clique cover. Otherwise, any complete 
cover consists of an edge cover with the addition of a clique for each singleton.

Given two integers n and m such that n > 0 and 0 ≤ m ≤ (n
2

)
, we let Gn,m denote the set of all simple, undirected graphs 

on n vertices and m edges. Given any graph G , we denote by θ(G) the size of a smallest cover of G ([6]). Finally, we denote 
by �n(m) the largest θ(G) of all graphs G ∈ Gn,m . For example, Fig. 1 shows �8(m) and �7(m) plotted together. The plot 
suggests that �n(m) is a very uniform function (parametrized by n).

We denote by iG the number of singletons in G , and with cG the number of non-isolated vertices. Clearly, if G ∈ Gn,m

then iG + cG = n. We let IG denote the subgraph of G consisting of the all singletons, and CG the subgraph consisting of all 
non-singletons and edges—|IG | = iG and |CG | = cG . Finally, we let SG (with cardinality sG ) denote the set of vertices which 
are adjacent to all other vertices (we call them stars). That is, v ∈ SG if Nv = V − {v}.

We define DG to be the degree sum of G , and AG the average degree in G . That is, DG = ∑
V dv and AG = DG/|G|. These 

will usually be denoted simply with D and A if G is implied by the context.
Given a vertex or set of vertices v in graph G , we denote by G − v the graph which results from removing v (or every 

vertex in v), along with all edges incident to v , from G .

2. Summary of results

In this paper, we explore two topics. First, we aim to characterize �n(m) in section 3. We synthesize theorems from 
Lovász (Theorem 3), Mantel and Erdős (Theorem 2) to establish an upper bound for �n(m) which is exact for some values 
of m but not for others. We establish that �n(m) has recursive properties, which we use to characterize it for some values of 
m and bound it in others. We improve Lovász’s bound in Theorems 12 and 17. These improvements are likely extendible to 
the complete characterization of �n(m) (see Conjecture 14). A succinct summary of these results can be found in section 3.3.

Next, in section 4, we establish a heuristic to order vertices and edges. The motivation is an algorithm developed in 
[3] (following work in [1]) which outputs a clique cover in polynomial time with respect to the number of vertices; this 
algorithm does not necessarily output a minimal or small cover, but it works quickly. Moreover, it outputs covers of different 
sizes when presented with vertices in a different order. We develop and explore a heuristic reminiscent of the PageRank
algorithm (we call it CliqueRank) and apply it in combination with some naïve heuristics. The resulting covers are 
significantly smaller than those from the original algorithm, particularly in dense graphs.

3. Characterizing �n(m)

In [3, Problem 11] the authors pose the following problem: describe the function �n(m) for every n. They provide as 
an example a (slightly flawed) graph for �7(m), where m ∈ [21] = [(7

2

)] (see [3, Fig. 3]). For n > 7, the number of graphs 
quickly becomes unwieldy, so it is desirable to compute �n(m) analytically. Our results do not necessarily apply to very 
small graphs; we assume throughout that any graph worth discussing has at least 4 vertices, as we can characterize �n(m)

for n < 4 easily by brute force. In fact, we have found �n by brute force for all n ≤ 8.
We know from [3] and from the results of Mantel and Erdős [5,2] that the global maximum of �n(m) is reached at 

m = �n2/4�. The reason is that this is the largest number of edges which can fit on n vertices without forcing triangles. 
This maximum is realized in complete bipartite graphs—such graphs have no triangles or singletons, so covers consist of all 
edges. The expression ‘�n2/4�’ will be used frequently, so we abbreviate it: for any expression exp, we let exp = �exp2/4�.
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