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This paper considers scheduling parallelizable jobs in the non-clairvoyant speed scaling 
setting to minimize the objective of weighted flow time plus energy. Previously, strong 
lower bounds were shown on this model in the unweighted setting even when the 
algorithm is given a constant amount of resource augmentation over the optimal solution. 
However, these lower bounds were given only for certain families of algorithms that do 
not recognize the parallelizability of alive jobs. In this work, we circumvent previous 
lower bounds shown and give a scalable algorithm under the natural assumption that the 
algorithm can know the current parallelizability of a job. When a general power function 
is considered, this is also the first algorithm that has a constant competitive ratio for the 
problem using any amount of resource augmentation.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Energy aware job scheduling has recently received a significant amount of attention in scheduling theory literature 
[8,9,12,5,10,30,16,38,15,19,32,37,14,7,39,4,18,20,3,31,48,22,33,49]. In a typical system the scheduler decides how resources 
(for example, machines or processors) are allocated to jobs over time. In an energy aware scheduling environment, the 
scheduler decides how to use resources in order to balance the energy consumed by the system with system performance. 
For example, the scheduler may turn off machines over time or the scheduler may dynamically scale the speed of a proces-
sor. The scheduler’s goal is to minimize the energy consumption while optimizing the quality of service for the jobs (or the 
clients who submitted the jobs). These two objectives are naturally competing. By using less energy the scheduler will have 
less resources available to process the jobs.

An energy aware scheduling model considered in previous literature is the online speed scaling setting. In an online
setting, the scheduler only becomes aware of a job once it arrives to the system, and the scheduler makes decisions over 
time without knowing the jobs that are to arrive in the future. Online models accurately capture most of the scheduling 
problems faced in the real world, because generally the scheduler will not be aware of a job until it arrives to the system. 

✩ A preliminary version of this paper appeared in the proceeding of the 24th ACM-SIAM Symposium on Discrete Algorithms, 2013 [27].

* Corresponding author.
E-mail addresses: kyle .fox @utdallas .edu (K. Fox), sim3 @ucmerced .edu (S. Im), moseleyb @andrew.cmu .edu (B. Moseley).

1 K. Fox was supported in part by the Department of Energy Office of Science Graduate Fellowship Program (DOE SCGF), made possible in part by the 
American Recovery and Reinvestment Act of 2009, administered by ORISE-ORAU under contract no. DE-AC05-06OR23100.

2 S. Im was supported in part by NSF grants CCF-1016684, 1409130 and 1617653.
3 B. Moseley was partially supported by NSF grants CCF-1617724, CCF-1733873 and CCF-1725661, a Google Research Award, and a Yahoo Research Award.

https://doi.org/10.1016/j.tcs.2018.02.021
0304-3975/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2018.02.021
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:kyle.fox@utdallas.edu
mailto:sim3@ucmerced.edu
mailto:moseleyb@andrew.cmu.edu
https://doi.org/10.1016/j.tcs.2018.02.021


JID:TCS AID:11485 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.233; Prn:8/03/2018; 12:36] P.2 (1-11)

2 K. Fox et al. / Theoretical Computer Science ••• (••••) •••–•••

The model can be made even more realistic by assuming the scheduler is non-clairvoyant; it does not know the processing 
time of the jobs. In the speed scaling model, the processors available to the scheduler can dynamically change their speed 
over time. This model captures the fact that many systems today have the ability to change the processor frequency over 
time such as the technology used in AMD’s PowerNow! and Intel’s SpeedStep. Such technology has become ever more 
important in mobile computing where battery power consumption is a high priority [42] and in large scale server farms 
that use a costly amount of energy [42].

Perhaps the most popular online scheduling objective without considering energy is minimizing the total flow time. The 
flow time of a job is the amount of time that passes between the job’s release and its completion. By minimizing the total 
flow time, the server focuses on optimizing the average quality of service delivered to the jobs. In the online speed scaling 
setting, most previous literature considered minimizing the total flow time plus the energy consumed in the system. This 
has a natural interpretation; a system designer may decide that it is worth spending one unit of energy to save β units of 
flow time. In this case, the system designer would want to minimize the total flow time plus β multiplied by the energy. By 
scaling the units of time and energy, we may assume that β = 1 and consider minimizing the total flow time plus energy. 
Work on this objective was initiated by studying processors whose power consumption obeys a generalization of the cube 
root rule observed in standard CMOS based processors [42,13]. For example, if the processor runs at speed s then the power 
consumed is sα for some constant α ≥ 1; the cubed root rule is observed when α = 3. This model has been rigorously 
studied [9,12,5,16,37,14,7,39], until a generalization was introduced by Bansal et al. [8]. In the generalization, there is a 
convex function P where P (s) is the power consumed when running the processor at speed s. Essential no assumptions 
are made on P except that it is convex and positive. This generalization is known as the arbitrary power function model. In 
either model, the total energy consumed by the system is the integral of power over all time.

1.1. Old and new scheduling models

In the online speed scaling setting the scheduler has two policies:

Job selection: The scheduler must decide which job should be scheduled at each moment in time.
Energy policy: The scheduler must decide how fast to run the processor(s) at each moment in time.

When considering scheduling jobs on a single machine with speed scaling, the general approach is to use a known algo-
rithm that performs well on a single machine without speed scaling and couple the algorithm with a natural speed scaling 
policy introduced in [2]. Essentially, this speed scaling policy runs the machine at speed s such that P (s) is proportional 
to the number of unsatisfied jobs. This policy creates a natural balance between the energy objective and the flow time 
objective, because the increase in the flow time objective at each moment in time is equal to the number of unsatisfied 
jobs. At each point in time, the two objectives will increase roughly at the same rate.

Recently, scheduling speed scaling jobs online on multiple processors or machines was addressed. When addressing a 
multiple processor setting there are two models which one can consider. The first is when each job can be assigned to at 
most one machine at each moment in time. This model naturally captures the settings faced in multiple machine environ-
ments such as server farms. It is known that when processors have fixed speeds and energy is not a part of the objective 
that no algorithm can be O (1)-competitive for the objective of total flow time, even if we do not assume non-clairvoyance 
[41,6]. This lower bound carries over to the speed scaling setting with arbitrary power functions. Due to this lower bound, 
most previous work has turned to using a resource augmentation analysis [35]. Here the algorithm is given extra resources 
over the adversary and then the competitive ratio is bounded. We say that an algorithm is b-speed c-competitive if the 
algorithm with b-speed achieves an objective value at most c times the optimal value with unit speed. In the fixed speed 
setting, we mean each of the processors runs b times faster than the optimal solution’s processors. In the speed scaling 
setting, when the algorithm runs a processor at power P (s) the algorithm can process jobs at speed b · s. The goal of this 
form of analysis is to find a (1 + ε)-speed O ( f (ε))-competitive algorithm for any constant ε > 0 where f is some function 
of only ε. That is, an algorithm which is O (1)-competitive while using a minimum amount of extra resources over the 
adversary. Such an algorithm is called scalable. For problems with strong lower bounds on the competitive ratio, a scalable 
algorithm is the best result that one can show using worst case analysis.

The works of Lam et al. [40,39] consider the case where each machine is identical. When machines are not identical, 
the problem becomes more algorithmically challenging. Scalable clairvoyant and non-clairvoyant algorithms were found for 
heterogeneous machine settings [30,29].

Another possible parallel scheduling model is when jobs can be scheduled on more than one processor at each moment 
in time. That is, jobs can run in parallel on multiple processors. The challenge in this setting is that there can be different 
degrees of parallelizability, even within phases of a single job. That is, each job consists of a set of phases that are to be 
processed sequentially. According to the phase a job is in, the job may be considerably sped-up when assigned to multiple 
processors, might not get sped-up, or something in between. The phases of a job can lead to different amounts of parallelism 
because one phase may require a lot of computation that can be easily parallelized, while another phase may require I/O 
that cannot be sped-up with extra computational power.

This setting can be formalized into a model known as the arbitrary speed-up curves model, so named because each 
phase of a job will have its own arbitrary speed-up curve/function that specifies its parallizability. Scheduling in this model 
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