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Cardinality constraints state that at most (at least, or exactly) k out of n propositional 
variables can be true. In this paper we prove the arc-consistency property of an encoding of 
cardinality constraint (into a CNF formula) that we call a standard encoding of generalized 
selection networks.
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1. Introduction

Cardinality constraints are of the form x1 +· · ·+ xn ∼ k, where x1, . . . , xn are Boolean variables (or their negations), k is a 
natural number, and ∼ is a relation from the set {=, ≤, <, ≥, >}. Such constraints appear naturally in formulations of differ-
ent real-world problems like timetabling [3], formal hardware verification [5] or cumulative scheduling [13]. Those problems 
(and many others) are hard to solve but their instances can be reduced to a series of SAT instances with additional sets of 
cardinality constraints. One of possible ways to solve such instances is to use a SAT-solver, therefore efficient encodings of 
cardinality constraints into CNF formulas are a crucial part of their applicability.

Comparator networks are simple data-oblivious models for sorting-related algorithms. In recent years several new encod-
ings of cardinality constraints were proposed that are based on comparator networks. The classic odd–even sorting networks 
by Batcher [4] were used in [1,2,7] whereas pairwise sorting networks by Parberry [12] were used in [6,9]. It has been ob-
served that using selection networks instead of sorting networks is more efficient for the encoding of cardinality constraints. 
The output of a selection network is the k largest elements from n inputs. Additionally the output has to be sorted. We can 
enforce the constraint x1 + · · · + xn < k by first building a selection network with input variables {x1, . . . , xn} and output 
variables {y1, . . . , yk}, then setting the output variable yk to 0. With this, no more than k − 1 xi ’s can be set to 1. In this 
paper we consider only the “<” relation. Constraints using other relations can be reduced to the one above (see [2]).

There is a property of an encoding called (generalized) arc-consistency which – in the case of cardinality constraints 
and SAT-solvers – states that: for a constraint x1 + · · · + xn < k, as soon as k − 1 variables among the xi ’s become true, 
unit propagation sets all other xi ’s to false. This has a positive impact on the practical efficiency of SAT-solvers, which is an 
important factor for the Constraint Programming community. The encodings proposed in [1,2,6,7,9] are all arc-consistent.
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Fig. 1. Comparator network.

Motivation: In [1,2,6] the authors use properties of their constructions to prove arc-consistency which is usually long and 
technical. In [9] the authors relieve some of this burden for the future researchers by proving that the standard encoding of 
any selection network preserves arc-consistency. In this paper we would like to generalize their proof to the extended model 
of selection networks. The motivation behind this comes from [1] where authors observe that having smaller networks in 
terms of number of comparators is not always beneficial in practice, as it should also be accompanied with a reduction of 
SAT-solver run-time. They extend the classic comparator network model by mixing the Direct Cardinality Networks (DCNs) 
into their recursive construction, for small values of n and k. The main building blocks of DCNs are m-Cardinality Networks 
which select m largest (sorted) values from the input of size n directly (without using auxiliary variables) and can be viewed 
as a certain generalization of a simple comparator. We will call them m-selectors for short. This approach reduces the 
number of variables in exchange for increased number of clauses. Experiments show that this approach is very competitive. 
Knowing this, we anticipate that more constructions will emerge that will generalize the comparator networks further and 
instead of using simple comparators (2-sorters) they will use sorters of higher order as building blocks (potentially mixed 
with m-selectors). We assume without loss of generality, that those networks consists of only selectors. We can do this 
because sorter is a special case of selector. This will leave us with fewer number of cases in the proofs. Such networks will 
be called Generalized Selection Networks (GSNs). Some encodings based on this new approach are already available, for 
example, see [10].

Structure of the paper: The rest of the paper is organized as follows: Section 2 contains definitions and notations used in 
the paper. In Section 3 we prove arc-consistency of standard encoding of GSN and we give concluding remarks in Section 4.

2. Preliminaries

We begin by briefly introducing comparator networks. Traditionally comparator networks are presented as circuits that 
receive n inputs and permute them using comparators (2-sorters) connected by “wires”. Each comparator has two inputs 
and two outputs. The “upper” output is the maximum of inputs, and “lower” one is the minimum. The standard definitions 
and properties of comparator networks can be found, for example, in [11]. The only difference is that we assume that the 
output of any sorting operation or comparator is in a non-increasing order.

Example 1. Fig. 1 is an example of a simple comparator network consisting of 3 comparators. It outputs the maximum from 
4 inputs on the top horizontal line, namely, y1 = max{x1, x2, x3, x4}.

We are interested in using comparator networks in the context of Boolean formulas, therefore we limit the domain of 
the inputs to 0-1 values.

Definition 1 (sequences). A binary sequence of length n is a sequence of 0-1 numbers x̄ = 〈x1, . . . , xn〉, where xi ∈ {0, 1}, 
1 ≤ i ≤ n. We say that a binary sequence x̄ ∈ {0, 1}n (of length |x̄| = n) is sorted if xi ≥ xi+1, 1 ≤ i < n. The number of ones 
in x̄ is denoted by |x̄|1.

A clause is a disjunction of literals (Boolean variables x or their negation ¬x). A CNF formula is a conjunction of clauses. 
We introduce the convention, that 〈x1, . . . , xn〉 will denote the input and 〈y1, . . . , yn〉 will denote the output of some order 
n comparator network (or GSN). We would also like to view them as sequences of Boolean variables, that can be set to 
either true (1), false (0) or undefined (X).

Unit Propagation (UP) is a process, that for given CNF formula, clauses are sought in which all literals but one are false 
(say l) and l is undefined (initially only clauses of size one satisfy this condition). This literal l is set to true and the process 
is iterated until reaching a fix point.

2.1. The Generalized Selection Network

Here we formally define the main part of our encoding, which is the Generalized Selection Network (GSN). The reader 
is encouraged to check other papers that use high-order sorters as components in the construction of sorting networks (for 
example, [14] and [8]) to gain better understanding of GSN.
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