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In 2006, Czeizler et al. introduced parallel communicating Watson–Crick automata system. 
They showed that parallel communicating Watson–Crick automata system can accept the 
non-regular unary language L = {an2

, where n > 1} using non-injective complementarity 
relation and three components. In this paper, we improve on Czeizler et al.’s work by 
showing that parallel communicating Watson–Crick automata system can accept the same 
language L using just two components.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Martin-Vide et al. [1] introduced parallel communicating automata systems. The system consists of many finite au-
tomata communicating with states. They also established that the computational power of such systems is equivalent to 
non-deterministic finite automata with multiple heads.

Watson–Crick automata are finite automata having two independent heads working on double strands where the char-
acters on the corresponding positions of the two strands are connected by a complementarity relation similar to the 
Watson–Crick complementarity relation. The movement of the heads although independent of each other is controlled by a 
single state. Freund et al. [2] introduced Watson–Crick automata. Its deterministic variants were introduced by Czeizler et
al. [3]. Work on state complexity of Watson–Crick automata is discussed in [4] and [5].

Czeizler et al. introduced parallel Communicating Watson–Crick automata systems (PCWKS) [6] and further showed 
that with non-injective complementarity relation parallel communicating Watson–Crick automata system can accept the 
non-regular unary language L = {an2

, where n > 1} with three components [7].
A parallel communicating Watson–Crick automata system [6] consists of several Watson–Crick automata each on its own 

input tape, and communicating by states. Every component of parallel communicating Watson–Crick automata system has 
its own double-stranded tape; the input is the same on all of them. An input is accepted by the system if all components 
are in final state and they completely parse the tape. Moreover, if one of the components stops before the others, the system 
halts and rejects the input.
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In this paper we show that parallel communicating Watson–Crick automata systems can accept the language L =
{an2

, where n > 1} using just two components which is an improvement on the work by Czeizler et al. (see Section 4).

2. Basic terminology

The symbol V denotes a finite alphabet. The set of all finite words over V is denoted by V ∗ , which includes the empty 
word λ. The symbol V + = V ∗ − {λ} denotes the set of all non-empty words over the alphabet V . For w ∈ V ∗ , the length of 
w is denoted by |w|. Let u ∈ V ∗ and v ∈ V ∗ be two words and if there is some word x ∈ V ∗ , such that v = ux, then u is 
a prefix of v , denoted by u ≤ v . Two words, u and v are prefix comparable denoted by u ∼p v if u is a prefix of v or vice 
versa.

A Watson–Crick automaton is a 6-tuple of the form M = (V , ρ, Q , q0, F , δ) where V is an alphabet set, set of states is 
denoted by Q , ρ ⊆ V × V is the symmetric complementarity relation similar to Watson–Crick complementarity relation, 
q0 is the initial state and F ⊆ Q is the set of final states. The function δ contains a finite number of transition rules 
of the form q(

w1
w2

) → q′ , which denotes that the machine in state q parses w1 in upper strand and w2 in lower strand 
and goes to state q′ where w1, w2 ∈ V ∗ . The symbol [ w1

w2
] is different from ( w1

w2
). While ( w1

w2
) is just a pair of strings 

written in that form instead of (w1, w2), the symbol [ w1
w2

] denotes that the two strands are of same length i.e. |w1| = |w2|
and the corresponding symbols in two strands are complementarity in the sense given by the relation ρ . The symbol 
[ V

V ]ρ = {[ a
b ] | a, b ∈ V , (a, b) ∈ ρ} and WKρ(V ) = [ V

V ]∗ρ denotes the Watson–Crick domain associated with V and ρ .
A transition in a Watson–Crick finite automaton can be defined as follows:
For (

x1
x2

), ( u1
u2

), ( w1
w2

) ∈ (
V ∗
V ∗ ) such that [ x1u1 w1

x2u2 w2
] ∈ WKρ(V ) and q, q′ ∈ Q , ( x1

x2
)q(

u1
u2

)(
w1
w2

) ⇒ (
x1
x2

)(
u1
u2

)q′( w1
w2

) iff there is 

transition rule q(
u1
u2

) → q′ in δ. We denote by ∗⇒ the reflexive and transitive closure of ⇒. The language accepted by a 

Watson–Crick automaton M is L(M) = {w1 ∈ V ∗ | q0[ w1
w2

] ∗⇒q[ λ
λ
], with q ∈ F , w2 ∈ V ∗ , [ w1

w2
] ∈ WKρ(V )}.

3. Parallel communicating Watson–Crick automata system

A parallel communicating Watson–Crick automata system of degree n, denoted by PCWK(n), is a (n + 3)-tuple

A = (V ,ρ, A1, A2, . . . , An, K ),

where

• V is the input alphabet;
• ρ is the complementarity relation;
• Ai = (V , ρ, Q i, qi, Fi, δi), 1 ≤ i ≤ n, are Watson–Crick finite automata, where the sets Q i are not necessarily disjoint;
• K = {K1, K2, . . . , Kn} ⊆ ⋃n

i=1 Q i is the set of query states.

The automata A1, A2, . . . , An are called the components of the system A. Note that any Watson–Crick finite automaton is 
a parallel communicating Watson–Crick automata system of degree 1.

A configuration of a parallel communicating Watson–Crick automata system is a 2n-tuple (s1, ( u1
v1

), s2, ( u2
v2

), . . . , sn, ( un
vn

))

where si is the current state of the component i and ( ui
vi

) is the part of the input word which has not been read yet by the 
component i, for all 1 ≤ i ≤ n. We define a binary relation 
 on the set of all configurations by setting

(
s1,

(
u1
v1

)
, s2,

(
u2
v2

)
, . . . , sn,

(
un

vn

))



(
r1,

(
u′

1
v ′

1

)
, r2,

(
u′

2
v ′

2

)
, . . . , rn,

(
u′

n
v ′

n

))

if and only if one of the following two conditions holds:

• K ∩ {s1, s2, . . . , sn} = ∅, ( ui
vi

) = (
xi
yi

)(
u′

i
v ′

i
), and ri ∈ δi(si, ( xi

yi
)), 1 ≤ i ≤ n;

• for all 1 ≤ i ≤ n such that si = K ji and s ji /∈ K we have ri = s ji , whereas for all the other 1 ≤ � ≤ n we have r� = s� . In 
this case ( u′

i
v ′

i
) = (

ui
vi

), for all 1 ≤ i ≤ n.

If we denote by 
∗ the reflexive and transitive closure of 
, then the language recognized by a PCWKS is defined as:

L(A) =
{

w1 ∈ V ∗
∣∣∣
(

q1,

[
w1
w2

]
,q2,

[
w1
w2

]
, . . . ,qn,

[
w1
w2

])

∗

(
s1,

[
λ

λ

]
, s2,

[
λ

λ

]
, . . . , sn,

[
λ

λ

])
,

si ∈ Fi,1 ≤ i ≤ n

}
.
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