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a b s t r a c t 

Among the many models for material appearance, data-driven representations like bidirectional texture 

functions (BTFs) play an important role as they provide accurate real-time reproduction of complex light 

transport effects such as interreflections. However, their acquisition involves time-consuming capturing 

of many thousands of bidirectional samples in order to avoid interpolation artifacts. Furthermore, high 

dynamic range imaging including many and long exposure steps is necessary in the presence of low 

albedo or self-shadowing. So far, these problems have been dealt with separately by means of sparse re- 

construction and multiplexed illumination techniques, respectively. Existing methods rely on data-driven 

models learned on data that has been range-reduced in a way that made their simultaneous application 

impossible. In this paper, we address both problems at once through a novel method for learning data- 

driven appearance models, based on moving the dynamic range reduction from the data to the metric. 

Specifically, we learn models by minimizing the relative L 2 error on the original data instead of the ab- 

solute L 2 error on range-reduced data. We demonstrate that the models thus obtained allow for faithful 

reconstruction of material appearance from sparse and illumination-multiplexed measurements, greatly 

reducing both the number of images and the shutter times required. As a result, we are able to reduce 

acquisition times down to the order of minutes from what used to be the order of hours. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Analytical material reflectance models such as (spatially vary- 

ing) bidirectional reflectance distribution functions ((SV)BRDFs) [1] , 

which model reflectance per surface point depending on the inci- 

dent and outgoing light directions, can nowadays be obtained effi- 

ciently, as simply as by taking two photographs with a cellphone 

camera [2] . Many applications require a higher degree of accuracy 

than what these models are able to deliver, or real-time render- 

ing including meso-scale light transport effects that require solving 

global illumination, e.g. interreflections and self-shadowing. Image- 

based representations such as data-driven SVBRDFs or bidirectional 

texture functions (BTFs) [3] provide these advantages. Capturing 

them, however, demands much more effort, up to days for a single 

material [4] . This can largely be attributed to two factors: high- 

frequency features and dynamic range. The former can be caused 

e.g. by specularity, parallax and shadows. In order to avoid visi- 

ble sub-sampling artifacts in rendering, often tens of thousands of 

images need to be obtained. The latter is a consequence particu- 
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larly of specularity, but also of shadows or low albedo. The more 

prominent these effects, the greater the number of exposure steps 

and the maximum exposure time necessary to capture a material’s 

full dynamic range. 

By now there are a number of approaches to solving these 

problems separately. Sparse acquisition techniques are applied 

when only a small subset of the desired dense sampling is actu- 

ally measured; the remaining data is then interpolated by means of 

linear models learned from an existing material database (e.g. den 

Brok et al. [5] , Nielsen et al. [6] ). Conversely, illumination multi- 

plexing exploits the linearity of the superposition of light by illu- 

minating the material sample not with a single light source but 

with patterns of light sources, which increases the amount of light 

on the sample and eliminates shadows, thereby reducing dynamic 

range (see Fig. 3 ). The desired representation with one active light 

source per image can then be obtained by solving an appropriate 

linear system, a process that is, however, known to be detrimen- 

tal to the signal-to-noise ratio (SNR). The models used in sparse 

acquisition have been shown to also help mitigate the noise prob- 

lems [7] . 

Either way, acquisition times can be reduced significantly, down 

to the range of at most a few hours [4] , but still far from what 

acquisition devices for analytical SVBRDFs are capable of. As the 

approaches are completely orthogonal, the question arises whether 
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the two paradigms can be combined. So far, this has been impos- 

sible: the linear bases used as models in the above approaches 

rely heavily on range-reduction techniques such as logarithmic 

transformations applied to the training data. These transforma- 

tions, however, do not commutate with multiplexing; i.e., we can- 

not infer the transformed data from a multiplexed measurement 

without prior de-multiplexing. But de-multiplexing requires im- 

ages for all multiplexing patterns, which we wish to avoid in 

sparse acquisition. 

In this paper, we present, to the best of our knowledge, the first 

approach to accurate reflectance acquisition which simultaneously 

exploits sparse acquisition and multiplexed illumination, enabling 

faithful BTF acquisition in several minutes. Specifically, we propose 

a different approach to dynamic range reduction in model learn- 

ing: rather than the absolute L 2 error on non-linearly transformed 

data as a metric, we minimize the relative L 2 error on untrans- 

formed data, which ultimately allows for sparse multiplexed ac- 

quisition of BTFs. As obtaining a basis this way is not as straight- 

forward as simply computing a truncated singular value decom- 

position (SVD), we provide an efficient alternating least-squares 

approach to compute a suitable basis. As demonstrated by our 

results, combined sparse and multiplexed acquisition allows for a 

reduction of acquisition time from the order of hours/days required 

for brute-force measurements down to only several minutes, sig- 

nificantly outperforming both sparse acquisition and multiplexed 

acquisition. 

We evaluate the performance in the sparse and multiplexed 

case, both separately and combined, and compare against the 

state-of-the-art. In our evaluation, we find that a method recently 

presented by Nielsen et al. [6] , which had only been tested on 

BRDFs and flat SVBRDFs so far, also works on material BTFs and 

slightly outperforms the state-of-the-art in this field. 

In summary, our paper presents the following key contribu- 

tions: 

• a novel basis for measured material appearance based on min- 

imizing the relative L 2 error on the untransformed data instead 

of the absolute L 2 error on non-linearly transformed data, 
• an evaluation of our basis’ performance as a model for the ap- 

pearance of typical real-world materials in the context of sparse 

or multiplexed acquisition. 
• En passant , we find that a recently presented sparse acquisition 

method only known so far to work for BRDFs and flat SVBRDFs 

also lends itself to arbitrary material BTFs and slightly outper- 

forms the state-of-the-art in this field. 
• We demonstrate that our basis is designed to take advantage 

of both sparse acquisition and multiplexed illumination at once, 

resulting in an overall acquisition speed-up of up several orders 

of magnitude in comparison to a full measurement, and a still 

significant speed-up of the acquisition process in comparison to 

sparse or multiplexed acquisition, while maintaining perceptu- 

ally accurate results. 

2. Related work 

In this section, we briefly review related work on modeling 

surface appearance including fine surface details. Furthermore, we 

discuss previous work on fast appearance acquisition based on 

the aforementioned concepts of sparse acquisition and illumination 

multiplexing. 

2.1. Acquisition and modeling of material appearance 

Detailed surveys on appearance acquisition and modeling can 

be found in the literature [8–11] . Widely used reflectance models 

that capture spatially varying material characteristics under vary- 

ing viewing and illumination conditions include spatially varying 

bidirectional reflectance distribution functions (SVBRDFs) [1] and 

bidirectional texture functions (BTFs) [3] . In contrast to SVBRDFs, 

BTFs are not necessarily defined with respect to the material’s ac- 

tual surface. Indeed, often a planar reference geometry is assumed, 

as for many materials like irregular fabrics it is difficult or prac- 

tically impossible to determine the exact surface geometry with 

conventional acquisition setups. As a result, SVBRDFs do not ac- 

curately capture the light exchange for such materials. Moreover, 

BTFs do not impose restrictions regarding energy conservation on 

the per-texel BRDFs and simply encode the appearance of the mate- 

rial at one particular coordinate on the reference geometry, which 

is why they are known as apparent BRDFs (ABRDFs) [12] . Together 

with the parametrization over a flat geometry this allows captur- 

ing non-local effects such as interreflections, self-occlusions and 

self-shadowing. As measured SVBDRFs can be considered a sub- 

class of BTFs, we shall focus on BTFs in this work. Due to their 

generality, BTFs are impossible to model, which is why one typ- 

ically retreats to image-based representations that can be eval- 

uated through a (possibly interpolated) table look-up. Measured 

BTFs have natural representations as matrices B ∈ R 

n lv ×n tx , where 

the rows correspond to linearized light- and view-dependent 2D 

textures, the columns to linearized per-texel apparent BRDFs (cf. 

Fig. 2 ), n tx denotes the number of texels (incorporating color chan- 

nels for brevity) and n lv the number of pairs of incoming and out- 

going light directions under consideration. Note that in order to 

avoid interpolation artifacts, it is desirable that n lv be large, in the 

order of thousands or tens of thousands, which in practice trans- 

lates to the expensive process of acquiring tens of thousands of im- 

ages of a given material. Given the matrix representation, both ex- 

isting methods to mitigate this problem and the proposed method 

can be written concisely in terms of matrix operations, as we shall 

detail on in the following. 

2.2. Sparse reflectance acquisition 

Seminal work on sparse reflectance acquisition has been intro- 

duced by Matusik et al. [13] with the introduction of a new re- 

flectance model that represents materials in terms of linear com- 

binations from a set of densely sampled BRDF measurements. In 

subsequent work, Matusik et al. [14] approach the sparse recon- 

struction of isotropic BRDFs based on both a wavelet basis and a 

linear model obtained from the MERL database of isotropic BRDFs. 

They, however, did not investigate generalizations of these results 

to more complex reflectance models. In a closely related work, BTF 

compression was approached by Koudelka et al. [15] , where sin- 

gle linear models for apparent BRDFs have been computed per- 

material. So far, the only technique that focuses on sparse recon- 

struction of BTFs has been presented by den Brok et al. [5] . Similar 

to the technique presented by Matusik et al. [13] , a linear model is 

derived by applying singular value decomposition on a (logarith- 

mically transformed) database of ABRDFs. By fitting these mod- 

els to small BTF patches, non-local effects of light exchange are 

taken into account and BTFs have been reconstructed from only 

6% of the typically used view-light conditions without a reduc- 

tion of the resolution determined by the acquisition setup. Further- 

more, manifold bootstrapping has been introduced by Dong et al. 

[16] , where a manifold is constructed from analytical BRDFs fitted 

to BRDF measurements of certain manually selected surface posi- 

tions on the material sample and used for the reconstruction of 

anisotropic SVBRDFs from sparse measurements. While a general- 

ization to previously unseen materials might be achieved, the sig- 

nificant increase of the dimensionality of the manifold of per-texel 

reflectance distribution functions makes this technique impractical 

for BTFs. Nielsen et al. [6] present an approach for BRDF recon- 

struction from an optimized sparse sampling, where an improved 

logarithmic mapping of the MERL database is employed to obtain 
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