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a b s t r a c t 

In humans, there is clear evidence of an association between hip fracture risk and femoral neck bone 

mineral density, and some evidence of an association between fracture risk and the shape of the proximal 

femur. Here, we investigate whether the femoral cortex plays a role in these associations: do particular 

morphologies predispose to weaker cortices? To answer this question, we used cortical bone mapping 

to measure the distribution of cortical mass surface density (CMSD, mg/cm 

2 ) in a cohort of 125 females. 

Principal component analysis of the femoral surfaces identified three modes of shape variation accounting 

for 65% of the population variance. We then used statistical parametric mapping (SPM) to locate regions 

of the cortex where CMSD depends on shape, allowing for age. Our principal findings were increased 

CMSD with increased gracility over much of the proximal femur; and decreased CMSD at the superior 

femoral neck, coupled with increased CMSD at the calcar femorale, with increasing neck-shaft angle. 

In obtaining these results, we studied the role of spatial normalization in SPM, identifying systematic 

misregistration as a major impediment to the joint analysis of CMSD and shape. Through a series of 

experiments on synthetic data, we evaluated a number of registration methods for spatial normalization, 

concluding that only those predicated on an explicit set of homologous landmarks are suitable for this 

kind of analysis. The emergent methodology amounts to an extension of Geometric Morphometric Image 

Analysis to the domain of textured surfaces, alongside a protocol for labelling homologous landmarks in 

clinical CT scans of the human proximal femur. 

© 2018 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Hip fractures are the most common cause of acute orthopaedic 

hospital admission in older people ( Parker and Johansen, 2006 ), 

with their annual incidence projected to rise worldwide from 

1.7 million in 1990 to 6.3 million in 2050 ( Sambrook and 

Cooper, 2006 ). Bone mineral density is currently the imaging 

biomarker of choice for assessing an individual’s fracture risk, but 

although it is specific ( Johnell et al., 2005; Kanis et al., 2008 ) it 

lacks sensitivity ( Kanis et al., 2008; Kaptoge et al., 2008; Sanders 

et al., 2006 ), missing the majority who go on to fracture. There is 

now growing evidence that focal, structural weaknesses may pre- 

dispose a hip to fracture ( Mayhew et al., 2005; Poole et al., 2010; 

de Bakker et al., 2009 ), with both trabecular and cortical bone 
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playing a role ( Holzer et al., 2009; Verhulp et al., 2008; Poole et al., 

2012; Kopperdahl et al., 2014 ). 

Cortical bone mapping ( Treece et al., 2010, 2012; Treece and 

Gee, 2015 ) is an emerging technique for the quantitative analysis 

of the cortex using clinical CT data. It measures key properties of 

the cortex, for instance its thickness and mineral density, with high 

accuracy at several thousand locations across the proximal femur. 

Each femur is therefore represented as a textured surface, with the 

scalar texture representing the cortical property of interest. Statis- 

tical parametric mapping (SPM) ( Friston et al., 1994 ) can then be 

used to analyse large cohorts of the textured surfaces ( Tucholka 

et al., 2012; Worsley et al., 2009 ), in order to deduce, for example, 

how the cortical property depends on age, sex or group. Analyses 

of this nature have shed light on focal defects that appear to play 

a role in fracture risk ( Treece et al., 2015; Poole et al., 2017; 2012 ), 

and the efficacy of exercise ( Allison et al., 2015 ) and pharmaceuti- 

cals ( Whitmarsh et al., 2016; Poole et al., 2015; Whitmarsh et al., 

2015; Poole et al., 2011 ) in targeting these defects. 
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Fig. 1. In this one-dimensional example of a textured ribbon, the figure shows five 

individuals from a population of 201. The population variance can be explained in 

its entirety by a single linear shape mode (a squash or expansion around the centre, 

with the ends fixed) and no variance in the texture. An alternative, though less 

parsimonious, explanation is that there is no variance in the shape but a complex 

variance in the texture, requiring three linear texture modes to explain 99% of the 

variance. 

An important step in the SPM pipeline is to spatially normal- 

ize the textured surfaces, a process which involves registering each 

surface to a standardized template. Only once the textures have 

been expressed on a common mesh, is it possible to fit a general 

linear model and explain the texture at each vertex in terms of the 

various regressors. In essence, surface registration involves estab- 

lishing correspondences between the template’s vertices and the 

vertices of each individual mesh. Inevitably, these correspondences 

are ambiguous in the barren areas between distinguished features. 

Different registration algorithms resolve the ambiguity in different 

ways, in a manner that depends on the surface’s shape. Conse- 

quently, SPM analysis of the relationship between a surface’s tex- 

ture and its shape is problematic, since shape-dependent misreg- 

istration induces shape-dependent texture variation which is seen 

as statistically significant ( Gee and Treece, 2014 ). 

To better understand this phenomenon, consider the contrived 

example in Fig. 1 , which shows some one-dimensional textured 

surfaces. The surfaces are free to deform in the one dimension, so 

they are best thought of as elastic ribbons. There is no unique way 

to explain the evident inter-subject variance. At one extreme, we 

could say that all the ribbons have precisely the same shape, with 

no elastic stretching or compression, meaning that all the variance 

is in the texture. At the other extreme, we could say that all the 

ribbons have precisely the same texture, meaning that all the vari- 

ance is in the shape. In between these two extremes are a con- 

tinuum of explanations which involve some shape variation, and 

also some texture variation that depends on shape. Given this am- 

biguity, how could we possibly address questions such as “How 

does the surface’s texture depend on its shape?” And yet such 

questions are theoretically intriguing and also practically enticing, 

since femoral shape appears to affect fracture risk ( Gregory and 

Aspden, 2008 ) and also bone mineral density ( Machado et al., 

2014 ). At least in males, the connection between shape and frac- 

ture risk is not independent of femoral neck bone mineral density 

( Ripamonti et al., 2014 ), hinting at a spatially dependent relation- 

ship between gross bone shape and the thickness and density of 

the cortex. 

Returning to the two extreme interpretations of Fig. 1 , the 

shape-only option leads to a compact model that can explain the 

population variance with a single, linear shape mode: a squash or 

expansion around the centre, with the ends fixed. This is how the 

data was generated. In contrast, principal component analysis re- 

veals that the texture-only option requires three texture modes to 

account for 99% of the population variance. Information parsimony 

( Davies et al., 2002 ) is one way to resolve the ambiguity, another 

being enforced correspondence between distinguished landmarks 

( Bookstein, 1991 ). Either way, we need to be clear that any subse- 

quent statistical analysis is entirely predicated on the assumptions 

used to establish correspondences. 

In this paper, we explore these issues in the context of the cor- 

tical bone mapping pipeline. Our motivation is to understand how 

the cortex of the human proximal femur depends on its shape. In 

Section 2 , we review the cortical bone mapping pipeline and de- 

scribe several different registration algorithms that can be used to 

spatially normalize the textured surfaces. We design a synthetic 

data set which sheds light on the systematic misregistration in- 

troduced by the various algorithms, and introduce the real human 

data which we hope to analyse. In Section 3 , we perform and dis- 

cuss a series of experiments on the synthetic data, leading to a 

novel framework for controlling the correspondence ambiguity. We 

apply this framework to the real data, producing detailed maps 

showing the variation of cortical mass with shape across the hu- 

man proximal femur. After discussing the biomechanical implica- 

tions of our findings, we draw some conclusions in Section 4 . 

2. Methods 

The context for this work is a pipeline of processes that en- 

ables the characterization and statistical analysis of cortical bone 

from clinical CT images. Although the pipeline can be applied to 

any bone with cortical and trabecular compartments, in this work 

we focus exclusively on the human proximal femur. An overview of 

the pipeline is presented in Fig. 2 . Each stage is described in more 

detail in the following sections. 

2.1. Cortical bone mapping 

Cortical bone mapping ( Treece et al., 2010; 2012; Treece and 

Gee, 2015 ) is a technique that estimates the cortical thickness (CTh, 

cm), cortical bone mineral density (CBMD, mg/cm 

3 ) and cortical 

mass surface density (CMSD = CTh × CBMD, mg/cm 

2 ) at thou- 

sands of locations distributed over the proximal femoral surface. 

The most accurate and precise estimates are for CMSD ( Treece and 

Gee, 2015 ), which is one of the reasons why we focus on this prop- 

erty in the present work. The other reason is that it is likely to play 

a significant role in local fracture resistance, accounting as it does 

for both the amount of cortex (CTh) and the mineralization of said 

cortex (CBMD). 

The starting point for cortical bone mapping is an approximate 

segmentation of the proximal femur, represented by a triangular 

mesh with ∼ 10 4 vertices ( Fig. 2 , step 1). At each vertex, the CT 

data is sampled along a line passing perpendicularly through the 

cortex (step 2). A model (step 3, red straight lines), that accounts 

for the imaging blur, is fitted to the data (step 3, cyan curve) so as 

to minimize the differences between the blurred model (step 3, red 

curve) and the data. This is repeated at all vertices. The resulting 

distributions of CTh, CBMD and CMSD can be visualised as texture 

maps on the femoral surface (in step 4, red is low CMSD while 

blue is high CMSD). Software to perform the initial segmentation 

and cortical bone mapping is available for free download. 1 

2.2. Spatial registration and the parameterization of shape 

For a cohort of size n , cortical bone mapping results in n tex- 

ture distributions like the one in Fig. 2 , step 4, each expressed on a 

different triangular mesh (since each individual femur has a differ- 

ent shape and size). Before we can compare these distributions and 

test how they depend on various regressors, we must first express 

each distribution on a common mesh. To this end, a canonical fe- 

mur with 5580 vertices (step 5, red) is rotated, translated and non- 

rigidly deformed until it aligns with each individual femur (step 5, 

green). The choice of the surface registration algorithm, and the 

implications for the subsequent statistical analysis, are the main 

focus of this paper. Once aligned, the surface texture is mapped 

from the individual to the canonical femur and smoothed (step 6). 

The canonical surface mesh (which was constructed by averaging 

1 www.mi.eng.cam.ac.uk/ ∼rwp/stradwin . 
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