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a b s t r a c t 

In brain structural segmentation, multi-atlas strategies are increasingly being used over single-atlas 

strategies because of their ability to fit a wider anatomical variability. Patch-based label fusion (PBLF) is 

a type of such multi-atlas approaches that labels each target point as a weighted combination of neigh- 

boring atlas labels, where atlas points with higher local similarity to the target contribute more strongly 

to label fusion. PBLF can be potentially improved by increasing the discriminative capabilities of the lo- 

cal image similarity measurements. We propose a framework to compute patch embeddings using neural 

networks so as to increase discriminative abilities of similarity-based weighted voting in PBLF. As par- 

ticular cases, our framework includes embeddings with different com plexities, namely, a simple scaling, 

an affine transformation, and non-linear transformations. We compare our method with state-of-the-art 

alternatives in whole hippocampus and hippocampal subfields segmentation experiments using publicly 

available datasets. Results show that even the simplest versions of our method outperform standard PBLF, 

thus evidencing the benefits of discriminative learning. More complex transformation models tended to 

achieve better results than simpler ones, obtaining a considerable increase in average Dice score com- 

pared to standard PBLF. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Segmentation of brain structures from magnetic resonance 

images (MRI) is an important step in many neuroscience applica- 

tions, including discovery of morphological biomarkers, monitoring 

disease progression or diagnosis. For example, segmentation is 

widely used as basic image quantification step in studies of early 

brain development ( Benkarim et al., 2017 ) and dementia ( Chupin 

et al., 2009; Li et al., 2007 ). 
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Multi-atlas segmentation (MAS) is being increasingly used for 

segmenting brain MRI ( Sanroma et al., 2016 ). In MAS, a set of 

atlas images are first registered to the image to be segmented 

(i.e., target) along with their anatomical labelmaps containing the 

spatial overlay of the anatomical structures. Then, the so-called 

label fusion process, labels each target point using the support of 

the corresponding atlas labels. Compared to using a single atlas, 

MAS can potentially fit a wider anatomical variability and has 

higher robustness to registration errors. Image intensities are often 

not sufficient for globally discriminating the different structures 

and therefore, spatial constraints are essential ( Colliot et al., 2006 ). 

Such spatial constraints are usually implemented by restricting the 

set of feasible labels for each target point to the set of labels in 

neighboring atlas points. 

Patch-based label fusion (PBLF) is a popular approach that com- 

putes each target label as a weighted combination of neighboring 

atlas labels, where atlas locations with higher local image similar- 

ity to the to-be-segmented target point have higher weight in the 
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combination ( Artaechevarria et al., 2009; Coupé et al., 2011; Wang 

et al., 2013 ). Here, the similarity between local image patches 

around each target and atlas point is taken as a proxy for the local 

registration accuracy and hence, for anatomical correspondence. 

PBLF can potentially be improved by increasing the discrimi- 

native capabilities of patch similarity measurements. For example, 

we proposed to learn discriminative patch embeddings reflecting 

the latent anatomical similarity between patches ( Sanroma et al., 

2015a ). A similar approach was recently proposed using convo- 

lutional neural networks (CNNs) ( Yang et al., 2016 ). Such learned 

embeddings are then used in standard PBLF. Other supervised 

approaches for learning optimal fusion rules have been presented. 

For example, in Sanroma et al. (2015b ) we proposed a transductive 

learning approach, and in Benkarim et al. (2016) we proposed to 

integrate discriminative learning into probabilistic label fusion. 

Semi-supervised learning approaches have also been proposed for 

propagating the anatomical labels from atlases to targets ( Guo and 

Zhang, 2012; Koch et al., 2014 ). Machine learning techniques such 

as support vector machines (SVM) ( Cortes and Vapnik, 1995 ) have 

also been used ( Bai et al., 2015; Hao et al., 2013; Sdika, 2015 ). 

In practice, most of these methods learn a different model (i.e., 

classifier) at each location ( Bai et al., 2015; Benkarim et al., 2016; 

Guo and Zhang, 2012; Hao et al., 2013; Koch et al., 2014; Sanroma 

et al., 2015a; 2015b; Sdika, 2015 ). This serves two purposes: (1) 

it implicitly imposes spatial constraints by restricting the training 

samples on each model to only neighboring atlas locations; and 

(2) it divides the difficult problem of finding a single global 

model into the problem of finding multiple simpler local models. 

However, this increases the complexity of storage and use of the 

method due to the high number of local models generated, which 

can easily reach several hundred thousands, even after restricting 

the modeling to only the most challenging regions. Another dif- 

ficulty when using local models is that training images must be 

in spatial correspondence in order to retrieve the training data 

for each local model. As a result, some methods opt for training 

the models in a common template space ( Sanroma et al., 2015a ). 

This implies that the target image must be segmented in the 

template space, incurring in interpolation errors when re-sampling 

the resulting segmentation to the original target space. Moreover, 

methods that consider pairwise relationships ( Benkarim et al., 

2016; Sanroma et al., 2015a; Yang et al., 2016 ) need pairwise 

registrations among the training images to evaluate the similarity 

between the embedded patches. This has memory complexity 

O 

(
N 

2 
)

during training, with N being the number of atlases, thus 

limiting the amount of atlases that can effectively be used for 

training. A related approach uses convolutional neural networks 

(CNN) for segmenting cardiac images ( Yang et al., 2016 ). For an 

input image, they obtain a stack of output images by applying the 

learned convolutional filters. The number of images in the stack 

is related to the dimensionality of the output embeddings. Thus, 

memory requirements for label fusion are O ( N × d ) , where N is 

the number of atlases and d the dimensionality of the output em- 

bedding. This poses serious limitations on the number of atlases 

at test time (in fact they only use 5 atlases for each target image). 

In brain MRI segmentation, usually more than 10 atlases are used 

( Aljabar et al., 2009; Lotjonen et al., 2010; Sanroma et al., 2014 ). 

To overcome these issues, we propose a method to learn 

discriminative patch embeddings using neural networks, 2 with the 

following contributions: 

• By incorporating our method into the regular label fusion 

process, we focus on the problem of learning the model, 

thus leveraging the capability of the label fusion process of 

restricting the set of possible labels at each point. 

2 The code of the method is available at https://github.com/gsanroma/deeplf . 

• The previous contribution facilitates that we compute a single 

model per bilateral structure (i.e., one model for both left and 

right parts of each structure). We take advantage of stochastic 

gradient descent (SGD) in order to process the vast amounts of 

data in small mini-batches. Therefore, our method allows for a 

practical storage and use. 
• We learn the model in the native space of each training atlas 

instead of using a template. Therefore, models are learned in 

the same space as they were annotated, thus avoiding inter- 

polation artifacts during training. Another advantage is that 

models are orientation-invariant and hence target images can 

directly be segmented in their native space. As consequence 

of this, the target anatomy can directly be quantified from the 

resulting segmentation, without need to correct for geomet- 

ric distortions caused by the transformation to the template 

space. 
• We learn the embeddings using patch relationships within the 

same image , leading to an attractive O ( N ) storage complexity 

at training (with N the number of atlases), compared to more 

costly approaches ( Benkarim et al., 2016; Sanroma et al., 2015a; 

Yang et al., 2016 ) that require pairwise atlas registrations in 

this phase. 
• Our method embeds the image patches independently rather 

than the whole images. Therefore, we can generate output 

embeddings of arbitrary dimensionality without compromising 

the number of atlases that can reasonably be handled (memory 

requirement at segmentation time is O ( N ) ). 

We apply our method to segment the whole hippocampus and 

the hippocampal subfields (see Section 4 ), a structure targeted by 

many studies on psychiatric and neurological disorders ( Chupin 

et al., 2009; Li et al., 2007 ). Accurate segmentation methods are 

required in order to quantify the subtle morphological changes 

undergone by these structures, especially in the early stages of the 

disease ( Frisoni et al., 2010; West et al., 2004 ). 

In the next section, we introduce multi-atlas segmentation and 

how it can be improved by using embedding techniques, before 

describing our method in Section 3 . 

2. Multi-atlas segmentation 

Let us denote ˆ X the target image to be segmented and 

X i , i = 1 , . . . , N a set of atlas images along with their corresponding 

labelmaps Y i containing the anatomical information. Multi-atlas 

segmentation (MAS) aims at estimating the segmentation on the 

target image using the atlas images and their labelmaps. 

This is implemented by (1) registering the atlas images to the 

target and (2) computing each target label as a combination of 

locally corresponding atlas labels, the so-called label fusion . 

Weighted voting is a popular label fusion approach that com- 

putes the target label as a weighted combination of atlas labels 

( Artaechevarria et al., 2009; Coupé et al., 2011; Wang et al., 2013 ). 

More formally, the label ˆ y p for a given target point p ∈ � in the 

image domain �, is computed as: 

ˆ y p = arg max 
l 

∑ 

iq 

ω iq δ
[
y iq = l 

]
(1) 

where y iq is the label in i th atlas at point q ∈ N p in the spatial 

neighborhood of p ∈ �, ω iq is the weight denoting the importance 

of y iq in determining the target label, and δ is Kronecker’s delta 

(i.e., δ[ a = b ] is 1 if a = b, 0 otherwise). 

One of the earliest label fusion approaches, known as ma- 

jority voting ( Heckemann et al., 2006; Rohlfing et al., 2004 ) 

assigns each target label the atlas label occurring most frequently, 

which is equivalent to using a constant weight, i.e., ω iq = c, ∀ i, 

q . This simple strategy already achieves substantial improvement 
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