
Probabilistic analysis of dynamic
malware traces

Jan Stiborek a,b,*, Tomáš Pevný a,b, Martin Rehák a,b

a Cisco Systems, Inc., 170 West Tasman Dr., San Jose, CA 95134, USA
b Department of Computer Science, FEE, CTU in Prague, Karlovo náměstí 13, 121 35, Praha, Czech Republic

A R T I C L E I N F O

Article history:

Received 10 May 2017

Received in revised form 8

December 2017

Accepted 15 January 2018

Available online

A B S T R A C T

We propose a method to automatically group unknown binaries executed in sandbox ac-

cording to their interaction with system resources (files on the filesystem, mutexes, registry

keys, network communication with remote servers and error messages generated by op-

erating system) such that each group corresponds to a malware family. The method utilizes

probabilistic generative model (Bernoulli mixture model), which allows human-friendly pri-

oritization of identified clusters and extraction of readable behavioral indicators to maximize

interpretability. We compare it to relevant prior art on a large set of malware binaries where

a quality of cluster prioritization and automatic extraction of indicators of compromise is

demonstrated. The proposed approach therefore implements complete pipeline which has

the potential to significantly speed-up analysis of unknown samples.

© 2018 Elsevier Ltd. All rights reserved.

Keywords:

Malware

Clustering

Dynamic analysis

Probabilistic modeling

Multiple instance learning

1. Motivation

With the number of new malware samples reaching 120 million
in 2016 (AV-Test GmbH, 2017), malware poses serious threat
to computer security. Despite the existence of automatic
methods for classification of unknown samples, a large portion
still requires human analysis. Our work simplifies the work of
malware analysts and incident responses by grouping malware
into coherent groups according to its behavior.

Traditionally, malware analysis relied heavily on static analy-
sis. Its main advantage is the low computational complexity
since analyzed binaries do not need to be executed or instru-
mented. However, due to evasion techniques like polymorphism,
obfuscation, encryption, etc., it is increasingly more difficult
to keep good recognition rate.

An alternative approach is dynamic analysis, which ex-
ecutes the analyzed binary in a controlled environment

(sandbox) (Oktavianto and Muhardianto, 2013) and monitors
its behavior. The presumed advantage is that the behavior
should be more difficult to conceal and therefore it should con-
stitute a more robust signal. A majority of approaches to
dynamic analysis relies on analysis of system calls (Ahmadi
et al., 2016; Naval et al., 2015; Wüchner et al., 2014), as they
are the only means how the binary can interact with operat-
ing system and its resources (files, network connections,
mutexes, etc.). However, the popularity of this strategy has
already triggered the development of evasion techniques such
as shadow attacks (Ma et al., 2012), system-call injection attacks
(Kc et al., 2003), or sandbox detection (Garcia). Finding new or
improving existing approaches for malware analysis is there-
fore important and makes the evasion more difficult.

This work postulates that the monitoring of system calls
is not the only means to gather information about malware’s
behavior. To provide revenue to its owner, malware has to
perform actions such as showing advertisements, encrypting

* Corresponding author.
E-mail address: jastibor@cisco.com (J. Stiborek).

https://doi.org/10.1016/j.cose.2018.01.012
0167-4048/© 2018 Elsevier Ltd. All rights reserved.

c om pu t e r s & s e cu r i t y 7 4 (2 0 1 8) 2 2 1 – 2 3 9

Available online at www.sciencedirect.com

journal homepage: www.elsevier.com/ locate /cose

ScienceDirect

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2018.01.012&domain=pdf
mailto:jastibor@cisco.com
http://www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/COSE

hard drive, stealing data, etc., which can be observed directly
through monitoring of interactions with system resources such
as files, kernel and system structures (e.g. mutexes, sema-
phores or registry keys), communication with network resources
and error messages reported by operating system. Although
each individual action may not be informative enough, their
combination is surprisingly strong as has been already dem-
onstrated in Mohaisen et al. (2015) and Rieck et al. (2011).
Moreover, such monitoring is possible without direct integra-
tion into controlled environment which increases the robustness
of the analysis.

This work extends the support for analysts by automatic
recognition of similar binaries and putting them into one group
(clustering), automatically extracting humanly understand-
able description of each group, and recommending group of
samples for manual analysts. These goals are approached by
using a generative model of interactions of the executed bi-
naries with files, operating system structures (mutexes), network
resources, registry keys and of error messages of the operat-
ing system. The key differences to the prior art and the
contributions of this paper are (i) a wider spectrum of modeled
resources, (ii) novel prioritization of identified groups of malware
samples, and (iii) automatic extraction of behavior indicators (BI)
in form of short examples of characteristic interactions with
system resources.

The proposed model is evaluated on a corpus of 130 000
malware binaries and compared to a state-of-the-art ap-
proach for behavior clustering.

2. Related work

Since the analysis of malicious binaries and recommending
them for further analysis has important practical applica-
tions, there exists a rich prior art. Although it is frequently
divided into two categories, static and dynamic analysis, the
boundaries between them are blurred since techniques such
as analysis of the execution graph are used in both categories.

2.1. Static malware analysis

Static malware analysis treats a malware binary file as a data
file from which it extracts features without executing it. The
earliest approaches (Lo et al., 1995) looked for a manually speci-
fied set of specific instructions (tell-tale) used by malware to
perform malicious actions but not used by legitimate bina-
ries. Later works, inspired by text analysis, used n-gram models
of binaries and instructions within (Li et al., 2005). Malware
authors reacted quickly and began to obfuscate, encrypt, and
randomize their binaries, which rendered such basic models
(Sharif et al., 2008) useless. Since reversing obfuscation and poly-
morphic techniques are in theory NP-hard (Moser et al., 2007),
most of the recent state of the art (Ahmadi et al., 2016;
Christodorescu and Jha, 2006; Sharif et al., 2008) moved to a
higher-level modeling of sequences of instructions / system
calls and estimating their action or effect on the operating
system. The rationale behind is that higher-level actions are
more difficult to hide.

2.2. Dynamic malware analysis

An alternative solution to analyzing obfuscation and encryp-
tion is the execution of a binary in a controlled environment
and analyzing its interactions with the operating system and
system resources.

A large portion of the work related to dynamic malware
analysis utilizes system calls, since in modern operating
systems, system calls are the only way for applications to in-
teract with the hardware and as such the calls can reveal
malware actions. The simplest methods view a sequence of
system calls as a sequence of strings and use histograms of
occurrences to create feature vectors for the classifier of choice
(Hansen et al., 2016). The biggest drawback of these naive tech-
niques is low robustness to system call randomization. Similarly
to static analysis, this problem can be tackled by assigning
actions to groups (clusters) of system calls (syscalls) and using
them to characterize the binary (Naval et al., 2015) (Wüchner
et al., 2014). One such example that uses analysis of the system
calls for malware clustering was proposed by Bayer et al. (2009).
Authors taint certain portions of memory, such as output ar-
guments and output values of system calls, and track all
operations with the tainted memory to generate traces of
system calls. This allows to uncover dependencies between in-
dividual system calls even when they are interleaved with
unrelated ones and provides information necessary for creat-
ing behavioral profile of the analyzed binary. These profiles are
then clustered with an algorithm based on locality sensitive
hashing.

A wide class of methods identifying malware samples from
sequences of syscalls rely on n-grams (Lanzi et al., 2010; O’Kane
et al., 2013). Malheur (Rieck et al., 2011) uses normalized his-
tograms of n-grams as feature vectors, which effectively embeds
syscall sequences into Euclidean space endowed with L2 norm.
In this space the algorithm extracts prototypes Z = {z1, …, zn}
using hierarchical clustering. Each prototype captures behav-
ior of the cluster, which should match corresponding malware
family. An interesting feature of Malheur is that if a cluster has
less than a certain number of samples, the prototype is not
created.

AMAL (Mohaisen et al., 2015) uses custom sandbox to in-
tercept and log interactions of the malware binary with files
and registry features and its communication over the network.
From these interactions AMAL extracts high-level numeric fea-
tures such as counts or sizes of created, modified or deleted
files, counts of created, modified or deleted registry keys, counts
of unique IP addresses, etc., and uses single-linkage cluster-
ing to identify similar binaries. Unlike AMAL, this work uses
resource names instead of their numerical properties to con-
struct its features. Moreover, the generative model allows to
prioritize founded clusters and extract typical characteristics
of each cluster.

Similarly to the presented model, Rieck et al. (2008) create
a representation of analyzed samples without manually defined
conversion of the input data, which consists of the names of
system calls and its parameters. The calls are treated as words,
specifically each system call name together with all its pa-
rameters corresponds to one word.To allow generalization, Rieck
et al. creates n + 1 additional words from a syscall with n pa-
rameters by iteratively removing its last parameter.This causes

222 c om pu t e r s & s e cu r i t y 7 4 (2 0 1 8) 2 2 1 – 2 3 9

Download English Version:

https://daneshyari.com/en/article/6883988

Download Persian Version:

https://daneshyari.com/article/6883988

Daneshyari.com

https://daneshyari.com/en/article/6883988
https://daneshyari.com/article/6883988
https://daneshyari.com

