
DFRWS 2018 USA d Proceedings of the Eighteenth Annual DFRWS USA

Memory forensics and the Windows Subsystem for Linux

Nathan Lewis c, Andrew Case a, Aisha Ali-Gombe d, Golden G. Richard III b, c, *

a Volatility Foundation, USA
b Center for Computation and Technology, Louisiana State University, USA
c School of Electrical Engineering & Computer Science, Louisiana State University, USA
d Department of Computer and Information Sciences, Towson University, USA

Keywords:
Memory forensics
Computer forensics
Memory analysis
Windows 10
Linux
WSL

a b s t r a c t

The Windows Subsystem for Linux (WSL) was first included in the Anniversary Update of Microsoft's
Windows 10 operating system and supports execution of native Linux applications within the host
operating system. This integrated support of Linux executables in a Windows environment presents
challenges to existing memory forensics frameworks, such as Volatility, that are designed to only support
one operating system type per analysis task (e.g., execution of a single framework plugin). WSL breaks this
analysis model as Linux forensic artifacts, such as ELF executables, are active in a sample of physical
memory from a system runningWindows. Furthermore, WSL integrates Linux-specific data structures into
existing Windows data structures, such as those used to track per-process metadata as well as userland
runtime data. This integration results in existing analysis plugins producing inconsistent results when
analyzing native Windows processes compared to WSL processes. Further complicating this situation is
the fact that much of the WSL subsystem internals are completely undocumented. To remedy the current
deficiencies related to WSL analysis, a research effort was undertaken to understand which existing
Volatility plugins are affected by the introduction of WSL as well as what updates are necessary to fully
support memory forensics of WSL. This paper describes these efforts, including our study of the operating
systems data structures relevant to WSL as well as the development of new Volatility analysis plugins.
© 2018 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The Windows Subsystem for Linux (WSL) (The Windows
Subsystem for Linux, 2017) is a significant new feature that was
introduced in the Anniversary Update of Microsoft's Windows 10
operating system. WSL provides the first truly native support for
Linux applications on a Windows operating system by imple-
menting loading and execution of ELF applications and libraries.
The ability to run native ELF files brings a large and diverse set of
existing Linux applications to Windows users, such as web, email,
FTP, and SSH servers, as well as a full suite of end-user applications.
Along with providing a simple method for transitioning existing
applications from Linux to Windows, Microsoft has also pledged a
long-term commitment to WSL as reflected in its documentation
(MSDN, 2017) and in the large set of updates and new features that
were included in the Fall Creators Update (Raj, 2017). The combined
effect of these actions suggests that WSL will be present and

supported for many years and that defensive security practices
must account for its existence.

Unfortunately, the introduction of a new executable file format
into Microsoft Windows, along with a very large number of new
Linux applications, provides an immense challenge for endpoint
software security vendors, such as anti-virus companies (Ionescu,
2016a). While these companies have dedicated nearly two de-
cades of research to understanding and detecting threats from
Portable Executable (PE) format files, the native Windows execut-
able file format, the very recent introduction of ELF requires an
entirely new set of detection capabilities and algorithms. As
described in Section 3, not only does the file new format provide
challenges, but the architecture that supports ELF files also in-
troduces many new data structures that make traditional malware
detection techniques inadequate.

This gap in traditional Windows analysis techniques affects not
only runtime software security vendors, but also memory forensics
frameworks, since these frameworks are very sensitive to the
location and layout of data structures populated by the operating
system. Specifically, the ability to correctly locate and parse these

* Corresponding author.
E-mail addresses: nplewis@lsu.edu (N. Lewis), andrew@dfir.org (A. Case),

aaligombe@towson.edu (A. Ali-Gombe), golden@cct.lsu.edu (G.G. Richard).

Contents lists available at ScienceDirect

Digital Investigation

journal homepage: www.elsevier .com/locate/d i in

https://doi.org/10.1016/j.diin.2018.04.018
1742-2876/© 2018 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

Digital Investigation 26 (2018) S3eS11

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:nplewis@lsu.edu
mailto:andrew@dfir.org
mailto:aaligombe@towson.edu
mailto:golden@cct.lsu.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2018.04.018&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
https://doi.org/10.1016/j.diin.2018.04.018
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.diin.2018.04.018
https://doi.org/10.1016/j.diin.2018.04.018


data structures is a fundamental design component of memory
forensics tools and similarly, the ability to locate all relevant
memory-resident artifacts is a requirement for thorough malware
and anomaly detection. The introduction of new data structures
and algorithms by WSL breaks many existing algorithms imple-
mented by current analysis frameworks. Furthermore, a class of
malware known as bashware can programatically enable WSL and
execute malicious code while taking advantage of the obfuscation
provided by WSL (Elbaz and Atias, 2017).

To close the detection gaps currently available to attackers
throughWSL, we conducted research to document the new sources
of forensics artifacts produced by WSL as well as creating new
memory forensics algorithms that provide better coverage of the
WSL subsystem. This paper describes this research and its out-
comes, including discussion of the relevant WSL architectural
components, the deficiencies in existing memory forensic algo-
rithms, and the new algorithms we created to recover WSL-related
memory artifacts. Our research was conducted through reverse
engineering of the WSL userland and kernel components as well as
testing and creation of Volatility (The Volatility Framework, 2017)
plugins. Volatility was chosen as our target memory analysis
framework because of its widespread use throughout the digital
forensics community combined with its ample documentation. All
of our newly created Volatility plugins, along with our patches to
existing plugins, will be contributed to the upstream project upon
publication of this paper.

2. Related work

2.1. WSL architecture memory analysis research

Internal components of the WSL architecture are closed source
and sparsely documented by Microsoft. While Microsoft's MSDN
and Windows Internals 7th Edition (Yosifovich et al., 2017) docu-
ment the high-level design ideas and exported APIs, these refer-
ences do not describe data structures or algorithms utilized byWSL.
Microsoft also does not provide full Visual Studio debugging files
(generally referred to as PDB files) for the WSL subsystem.

The only substantial existing memory analysis research for WSL
was undertaken by Alex Ionescu and appeared in Blackhat 2016
(Ionescu, 2016a). Code, in the form of WinDbg scripts, related to
this effort is publicly available in a Github repository (Ionescu,
2016b). A complete comparison between our research effort and
his is provided in Section 4.

Concurrently with our research effort, a member of the Vola-
tility development team, Michael Ligh, published a set of patches
that enabled correct reporting of WSL process names (Ligh, 2017).
Our team had performed the same research, as discussed in
Section 5.

2.1.1. Cygwin for Linux on Windows
Executing Linux programs on Windows systems was possible

before the release of WSL. Cygwin is a software project that allows
users to execute Linux programs in Windows environments. The
Cygwin terminal provides a shell environment from which users
can interact with a virtual filesystem, execute supported programs,
and issue POSIX system calls (Cygwin, 2017). The Cygwin design is
similar toWSL in that both bring lightweight virtualization of Linux
environments to Windows systems. However, the ways in which
this functionality is provided are significantly different. Cygwin
compiles Linux source code into standard PE-formatted execut-
ables, which are then linked against a library that provides POSIX
compatibility by translating between Unix and Windows system
calls. Notably, Cygwin does not introduce ELF files into Windows
and operates entirely in userspace, without kernel components. In

contrast, WSL is more tightly integrated, introduces support for
executing ELF files, and has both userland and kernel space
components.

3. WSL background

Microsoft's Drawbridge project team focused its research efforts
on application sandboxing, a method for lightweight virtualization.
The project's goal was to introduce a library operating system
model into a commercial version of Windows that relocated
operating system dependencies of sandboxed applications into
their process' address spaces (Baumann et al., 2016). Drawbridge
first produced a prototype version of Windows 7 using a library OS
architecture in 2011 (Porter et al., 2011).

Drawbridge proposed two new process types -minimal and pico
- while retaining support for Microsoft's traditional NT processes.
Unlike NT processes, minimal processes lack key Window compo-
nents that tie NT processes directly to the kernel. Fig. 1 depicts
these components. Minimal processes have empty userland
memory and are unmanaged by the kernel in many respects. Pico
processes are minimal processes that are also associated with a
corresponding kernel driver. A pico process' kernel driver is
responsible for managing the process' userland memory, threads,
scheduling, file handles, and sockets (Hammons, 2016a; Hron,
2017). This driver is commonly referred to as the pico provider.

WSL, the most prominent application of pico processes in
Windows, was released in 2017 with the 64-bit version of the
Windows 10 Fall Creators Update after more than one year of beta
testing (Turner, 2017). It enables users to directly execute userland
Linux programs inWindows 10 by associating each executing Linux
application with a pico process. This allows users to execute ELF
binaries without the need for a virtual machine, source code
modification, or an intermediate application. Furthermore, users
can download an app for each of the five currently supported Linux
distributions from the Microsoft Store (Cooley et al., 2017): Ubuntu,
Debian GNU/Linux, openSUSE Leap 42, SUSE Linux Enterprise
Server 12, and Kali Linux. The following processes are components
of WSL's implementation and are illustrated in Fig. 2:

� wsl.exe or bash.exe: A userland command line process through
which users interact withWSL. This program can be instantiated
more than once.

� LxssManager: AWindows service that facilitates communication
between wsl.exe/bash.exe processes and the WSL pico provider.

� lxss: A Windows system service that serves as the WSL pico
provider.

� /init: A Linuxpicoprocess that facilitates communication between
Windows processes and its descendants. lxss creates one /init
process per instantiated Linux distribution.

� /bin/bash: A Linux pico process that supports the WSL shell
program. Each wsl.exe and bash.exe process is paired with a
matching /bin/bash process.

To start WSL, a user executes the <distro> .exe program corre-
sponding to a desired Linux distribution, which creates a wsl.exe
process. A user can also access the system's default distribution by
executing bash.exe or wsl.exe directly. Each execution is isolated by
Windows in its own Linux instance. The WSL NT services and an/init
pico processwill be created for the user's Linux instance if they don't
already exist. The lxss service registers itself as the pico provider
with theWindows kernel through the PsRegisterPicoProvider
system call. This instructs the kernel to allow lxss to manage system
calls, exceptions, and resources on behalf of WSL pico processes
(Hammons, 2016a). A Linux shell GUI will be created if wsl.exe is
executed either from within cmd.exe or from the Windows GUI.

N. Lewis et al. / Digital Investigation 26 (2018) S3eS11S4



Download English Version:

https://daneshyari.com/en/article/6884365

Download Persian Version:

https://daneshyari.com/article/6884365

Daneshyari.com

https://daneshyari.com/en/article/6884365
https://daneshyari.com/article/6884365
https://daneshyari.com

