
The Journal of Systems and Software 109 (2015) 214–228

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

A Model-Driven approach for functional test case generation

J.J. Gutiérrez, M.J. Escalona∗, M. Mejías

Department of Computer Languages and Systems, ETS Ingeniería Informática, IWT2 Research Group, University of Seville, Av. Reina Mercedes S/N, Seville, Spain

a r t i c l e i n f o

Article history:

Received 19 November 2014

Revised 19 July 2015

Accepted 4 August 2015

Available online 12 August 2015

Keywords:

Software quality assurance

Model-Driven testing

Early testing

a b s t r a c t

Test phase is one of the most critical phases in software engineering life cycle to assure the final system

quality. In this context, functional system test cases verify that the system under test fulfills its functional

specification. Thus, these test cases are frequently designed from the different scenarios and alternatives

depicted in functional requirements. The objective of this paper is to introduce a systematic process based on

the Model-Driven paradigm to automate the generation of functional test cases from functional requirements.

For this aim, a set of metamodels and transformations and also a specific language domain to use them is

presented. The paper finishes stating learned lessons from the trenches as well as relevant future work and

conclusions that draw new research lines in the test cases generation context.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Software quality assurance is one of the most critical steps in

software development. Validation and verification techniques were

proposed in the software research context to ensure quality and most

of them are mainly organized into test phase. Test phase frequently

allows us to group each activity oriented toward validating each

aspect of our software results, from a small piece of code (with unit

tests) to a total piece of the final system (with acceptance user tests)

(Binder, 2000).

However, despite its relevance, test phase is frequently planned

with very few resources, without an expert group of tests and a re-

duced group of techniques or tools that help support it (Shah et al.,

2014; Huda et al., 2015). Besides, test phase is frequently a good can-

didate to keep up a delay, with resources or time reductions, when a

software project is delayed (Li et al., 2010; Felderer and Ramler, 2014).

Consequently, both the software test research community and the en-

terprise environment are working in developing techniques, mecha-

nisms and tools that enable reducing test phase cost ensuring final

quality results (Nazir and Khan, 2012).

Model-Driven Engineering (MDE) could be a solution to get this

goal. This new software paradigm is based on the design and use of

models to obtain software artifacts. Its application in test context is

known as Model-Driven Testing (MDT), which is being successfully

utilized in different Software Testing contexts (Völter et al., 2013).

This paper presents an approach that, applied to the enterprise con-

text, endorses this sentence.

∗ Corresponding author: Tel.: +34 954552852; fax: +34 954556844.

E-mail addresses: javierj@us.es (J.J. Gutiérrez), mjescalona@us.es,

mjescalona@iwt2.org (M.J. Escalona), risoto@us.es (M. Mejías).

This work also introduces a MDT approach that mainly focuses on

a very concrete type of test: functional testing. This kind of testing

tends to guarantee that initial requirements defined by users are cor-

rectly supported by the final system (Bertolino et al., 2005). This ap-

proach takes advantage of MDT power to define a set of models, trans-

formations and processes that allows defining, in a systematic way,

functional tests from functional requirements, reducing time and as-

suring the right traceability between initial requirements and final

tests. The approach is authorized by the current real validation that

we are getting in the enterprise environment.

This MDT approach comprises five metamodels and four trans-

formations. Two metamodels are used to model the required infor-

mation from functional requirements. The first transformation allows

improving the requirement metamodel with a simple graph describ-

ing the functionality expressed in the requirement. Such graph is re-

dundant as it does not describe any new information, but it helps sim-

plifying other transformations. Path analysis and Category-Partition

Methods are two of the main techniques used to derive test cases

from functional requirements. Therefore, two metamodels and trans-

formations have been designed to perform these techniques. Finally

this MDT approach adds a fifth metamodel and a transformation to

offer a consolidate view of the paths and categories.

From the authors’ point of view, one of the main challenges for

functional test case generation is the lack of formalism in functional

test cases. With regard to advantages, functional requirements

provide flexibility in the techniques, for example, by means of use

cases or user stories. However, this flexibility is a gap to be filled in

when trying to automate operations from use cases. The formalism

of functional requirements constitutes a hard task in terms of time,

knowledge and money. However, as this paper illustrates in the prac-

tical cases, once achieved, it provides a valuable return of investment.

http://dx.doi.org/10.1016/j.jss.2015.08.001

0164-1212/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2015.08.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.08.001&domain=pdf
mailto:javierj@us.es
mailto:mjescalona@us.es
mailto:mjescalona@iwt2.org
mailto:risoto@us.es
http://dx.doi.org/10.1016/j.jss.2015.08.001


J.J. Gutiérrez et al. / The Journal of Systems and Software 109 (2015) 214–228 215

This study is organized as follows: Section 2 presents the back-

ground that lists the terminology used in order to introduce the

reader to the concrete context of the paper. Next, Section 3 offers a

brief summary regarding related work on functional test cases and

the most used testing techniques. Section 4 explains the approach by

introducing the process of functional test cases generation from func-

tional requirements under a MDT perspective in the first subsection;

the second one analyzes in detail the set of used metamodels; and

the third one defines transformations. Then, Section 5 details how

the approach is implemented and provides the reader with a con-

crete example and practical references of the approach. To conclude,

Sections 6 and 7 state the original contribution of this work together

with the relevant conclusions and ongoing work.

2. Model-Driven engineering

As mentioned before, this paper focuses on the application of MDE

in functional test cases generation. This section provides the reader

with the lexicon and tools used along the text.

Two important elements must be stuck out in MDE environment:

metamodels and transformations.

Metamodels normalize the information used for generating test

cases. A metamodel defines the constructor and the relations with

constraints allowing models design with a valid semantics. Meta-

models enable combining different concrete syntaxes (as textual and

graphical syntaxes exposed in the motivational example) using the

same lexicon and manipulating the same semantic artifacts.

A transformation is a relation between elements in a source

metamodel and elements in a target metamodel. Therefore, execut-

ing transformation helps build a group of elements in target models

to conform to their metamodels, using the information from a set of

elements in source models, which must also agree with their meta-

models. In this case, the agreed point guarantees that the transforma-

tion can be performed. Transformation elements define a systematic

process regardless of any tool or programming language.

In this paper, UML (Unified Model Languages) (Object Manage-

ment Group, 2011) class diagrams define the metamodel presented

in the next sections, while QVT (Query-View Transformation lan-

guage) (Object Management Group, 2010) identifies transformations.

We select both solutions, as they are well-known standards. UML is

proposed by OMG (Object Management Group) and it is frequently

used in MDE for defining metamodels. OMG also suggests that QVT

should be the standard for specifying transformations among models.

Even though other possibilities are available to run our work, like ATL

(ATL Transformation Language, 2015), we prefer using QVT since it

has provided us with successful results in preceding projects (García-

García et al., 2013).

QVT defines two main syntaxes for defining transformations:

QVT-Relational and QVT-Operational. The former is a declarative

language similar to SQL. The latter defines operators and control

structures from classic imperative languages. We have selected QVT-

Operational for this paper because some of the transformations out-

lined in the subsequent section use a pathfinder algorithm.

A transformation in QVT is decomposed into a set of mapping op-

erations. A mapping is a relation between one or more source ele-

ments and one or more target elements.

Other elements used for defining transformations in QVT are

queries and helper. Both elements are operations that perform a

computation and provide a result. A helper may have side effects on

the given parameters, whereas a query has no side effects.

This paper also introduces the concept of direct mapping. It de-

fines a relation between one source element and one target ele-

ment and a relation 1:1 between the attributes of the source el-

ement and the target element. Attributes from source and target

elements have the same names and types. From this perspective,

generating test cases from functional requirements becomes a prob-

lem when defining metamodels for functional requirements and test

cases, and creating a set of transformations to get concrete test cases

from particular functional requirements. Metamodels and transfor-

mations needed for producing functional test cases from functional

requirements are presented in the next sections.

3. Related work

As the contextualization of our problem concerns, this section

presents related work and it is divided in two parts. Section 3.1 sum-

marizes the bibliography related to functional test cases generation

from functional requirements. Then, Section 3.2 describes the two

main techniques found in the literature previously studied.

3.1. State-of-the-art

At the time of writing this paper, there are two main surveys,

(Escalona et al., 2011) and (Denger and Mora, 2003), studying exist-

ing approaches dealing with generating functional test cases from

functional requirements. This section summarizes their most rele-

vant conclusions.

These two considered surveys are specific for functional test cases,

although other relevant comparative studies in this sense were pub-

lished, such as Anand et al. (2013), where prominent techniques for

automatic generation of software test cases are compared.

Conclusions from Denger and Medina’s survey point out that the

authors of the approaches do not follow any standards when defin-

ing templates (for functional requirements). On the contrary, each ap-

proach uses its own templates and formats. Another conclusion from

that report is that none of the approaches uses path analysis tech-

niques and, as a previous step, the approaches build a more formal

representation of functional requirements.

Escalona’s survey, developed by the same authors who write this

article, concludes like the previous one. They mainly agree that many

of the existing approaches have to formalize requirements as a first

step to generate functional test cases, because of the use of text tem-

plates and colloquial language to define functional requirements. This

is a mandatory step in approaches that offer a high degree of system-

atization and demand supporting tools. However, it can be pointed

out that some approaches offer a systematic way, or even automatic

ways to generate more formal models to automate the process. In this

case, this is possible because requirements are described in natural

language, therefore, they are metamodels and some transformations

from this description enable translating requirements in natural lan-

guage into activity diagrams.

Escalona’s survey, published at the end of 2011, cites 24 ap-

proaches; the oldest dates back to 1988 (Category-Partition Method)

and the newest to 2009. Denger’s, published in 2003, cites 12 ap-

proaches; the oldest from 1988 (it is the same approach used in

Escalona’s survey) and the newest from 2002.

Below, there are some examples of the approaches included in

Denger’s and Escalona’s surveys and new approaches not included

in any surveys in order to update the current situation.

Hartmann et al. (2004) start their approach with functional re-

quirements written in natural language. The result is a set of func-

tional test cases obtained from a coverage criterion based on combi-

nations that support Boolean propositions.

Binder’s book (Binder, 2000) describes the application of the

Category-Partition Method to use cases. Categories are any point in

which the behavior of the use case may be different in two realiza-

tions of the use case. This application is named Extended Use Case

Pattern.

In addition, Ibrahim et al. (2007) offer a tool, called GenTCase,

which generates test cases automatically from a use case diagram en-

riched with every use case tabular text description.



Download English Version:

https://daneshyari.com/en/article/6885605

Download Persian Version:

https://daneshyari.com/article/6885605

Daneshyari.com

https://daneshyari.com/en/article/6885605
https://daneshyari.com/article/6885605
https://daneshyari.com

