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a  b  s  t r  a  c  t

Economic  optimal  operation  typically  involves  operating  as  close  as possible  to the  active  constraints.
However,  in the  presence  of  disturbances  it is necessary  to back-off  from  the  constraints  in order  to  avoid
violating  them.  The  backoff  approach  aims  at selecting  the  control  structure  that  minimizes  the  eco-
nomic  loss  associated  with  the  required  constraint  backoffs.  This  paper  revisits  the backoff  approach  and
proposes  a framework  for estimating  the  constraint  backoffs  based  on well-known  elements  of internal
model  control  (IMC)  theory,  such  as  an  automatic  procedure  for  tuning  the IMC  low-pass  filters,  a  stability
condition,  and an  uncertainty  representation  based  on diagonal  input  multiplicative  uncertainty.  Since
the  constraint  backoffs  are  estimated  using  a linear  dynamic  model,  the inclusion  of  input  multiplicative
uncertainty  allows  introducing  conservatism  in  the  estimation  of  the  backoffs,  which  is  required  in order
to  avoid  constraint  violations.  A  forced-circulation  evaporator  benchmark  problem  is used  to  illustrate
the  approach.

© 2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

In the process industries, an important design decision concerns
the selection of an appropriate control structure (CS). Plantwide
control (PWC) is a well-known research topic that addresses the
decisions involved in control structure design [1–3]. Typical deci-
sions involve the appropriate selection of the following elements:
the controlled variables (CVs); the manipulated variables (MVs);
the input–output pairing between these sets; and various charac-
teristics associated with the controller itself, such as the interaction
degree (diagonal, sparse, full); the control policy (decentralized or
centralized); the controller technology (classical or advanced); and
controller tuning. There are several approaches in the literature
addressing the PWC  problem in many different contexts and by
using many different tools. Common procedures involve heuris-
tic tools, model-based optimization, controllability assessments,
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steady-state indexes, etc. A good review of these techniques can
be found in Skogestad and Postlethwaite [1] and Rangaiah and
Kariwala [2].

The attempts to integrate control structure selection, process
design, and optimal process operation have demonstrated the need
to parameterize the controller structure in some suitable manner.
Some of the approaches that have been proposed for this purpose
are the following ones: decentralized proportional-integral (PI)
control [4], internal model control (IMC) [5], Q-parameterization
[6], and model predictive control (MPC) [7,8]. The last three
strategies have strong structural resemblances between them, in
particular when the unconstrained case is considered. The clas-
sical IMC  theory is a useful and well-known tool for controller
design. Moreover, there are several developments in this area that
serve to analyze tuning, performance, stability, and robustness [9].
The IMC  design procedure allows to represent single-input single-
output (SISO), as well as multiple-input multiple-output (MIMO)
controllers easily by mean of the respective process model selected.
In the MIMO  case, the controller interaction (decentralized, full or
sparse) can be investigated by defining a particular structural plant-
model mismatch [10]. Due to all these interesting characteristics,
the IMC  approach becomes an excellent option for making control
structure design decisions.

Among model-based optimization approaches, the use of
dynamic optimization has been proposed in order to deter-
mine the most economic design that satisfies all the operability
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constraints in the presence of bounded disturbances [11–13]. The
optimum operating point is often located at the intersection of
the active constraints. However, in the presence of disturbances
it is necessary to include safety margins or backoffs in order to
avoid constraint violations. The size of the backoffs depends on
the variability of the constrained variables in the neighbourhood
of the constraint boundaries for the closed-loop controlled system.
The backoff approach for process control structure selection is
based on the idea of selecting the control structure that minimizes
the economic loss associated with the required constraint backoffs
[4,14–16]. In these works, controller design is avoided by assum-
ing perfect control. Heath et al. [4] also propose a more realistic
approach wherein the constraint backoffs are estimated using
decentralized PI controllers.

In this paper, we propose an alternative procedure for pro-
cess control structure selection based on the backoff methodology,
wherein the dynamic constraint backoffs are computed using
IMC  theory for parameterizing the controller. In this context, the
tuning rules, the potential controller interaction, and the sta-
bility/robustness at closed-loop, can be evaluated in an unified
framework. Although this article presents an analysis for decen-
tralized and full controller interaction, the IMC  structure allows to
extend the methodology to sparse controllers [10]. The uncertainty
representation based on diagonal input multiplicative uncertainty
is proposed in order to introduce robustness in the estimation of
the constraint backoffs. The overall problem can be formulated as a
mixed-integer nonlinear program (MINLP). In this paper, a stochas-
tic sequential global search approach based on genetic algorithms
(GA) is proposed as solution strategy. In addition, a deterministic
approach based on classical optimization tools is also tested in the
Appendix. The performance of the proposed strategy is illustrated
by means of a forced-circulation evaporator process.

The paper is arranged in the following order. Section 2 form-
ulates the economic optimization problem, and introduces the
different elements that are required for the approach proposed
in this paper. Section 3 describes the methodology proposed in
this paper, which consists in implementing the constraint back-
off approach using IMC  theory for parameterizing the controller.
The overall control structure selection algorithm is presented. In
Section 4 the evaporator process is presented and the suggested
procedure is applied. Several optimization results and dynamic
simulations are presented in order to illustrate the overall method-
ology. Finally, Section 5 concludes the paper.

2. Preliminaries

2.1. Economic optimization problem

The open-loop behavior of the plant is represented by the fol-
lowing system of differential-algebraic equations:

fD(ẋ, x, w, u, d) = 0, (1a)

fA(x, w, u, d) = 0, (1b)

y = F(x,  w, u, d), (1c)

where x ∈ IRnx is the vector of state variables, w ∈ IRnw is the vector
of algebraic variables, u ∈ IRnu is the vector of input variables, d ∈
IRnd is the vector of uncertain parameters and disturbances, and
y ∈ IRny is the vector of measured output variables.

Continuously operating plants are typically designed to oper-
ate at steady-state conditions. The optimum steady-state operating
point is given by the solution of the following nonlinear program
(NLP):

u�(�, d) = argmin
u

J(x, w, u, d) (2a)

s.t. fD(0, x, w, u, d) = 0, (2b)

fA(x, w, u, d) = 0, (2c)

yL + �y ≤ y = F(x, w, u, d) ≤ yU − �y, (2d)

uL + �u ≤ u ≤ uU − �u, (2e)

where J is the economic objective function (or cost) to be mini-
mized, yL and yU are the lower and upper bounds on the output
variables, and uL and uU are the lower and upper bounds on
the input variables. The vectors �y ∈ IRny and �u ∈ IRnu , with �y,
�u ≥ 0, denote the output and input constraint backoffs, respec-
tively. These constraint backoffs are typically included in order to
avoid dynamic constraints violations due to perturbations. Alterna-
tively, the output and input constraints (2d) and (2e) can be written
collectively as the constraints

g(x, w, u, d) + � ≤ 0, (3)

with the constraint backoffs � ≥ 0. Note that g may also include
constraints for unmeasured predicted variables.

We denote by u�(�, d) the optimal input as a function of the
constraint backoffs and the disturbances. The constraint backoff
vector � is said to be implementable if for that � there exists a fea-
sible solution to Problem (2) for any d ∈ D, where the disturbance
set D  is considered to be a box set of the form D  = {d ∈ IRnd : dmin ≤
d ≤ dmax}.

2.2. Plantwide control problem

Let us consider a stable (or stabilized) linear process model with
nu inputs, ny outputs, and nd disturbance variables, represented as

y(s) = G(s)u(s) + D(s)d(s), (4)

where y(s), u(s), and d(s) are the vectors of output, input, and
disturbance variables, respectively, and G(s) and D(s) are transfer
functions matrices (TFM) of dimensions (ny × nu) and (ny × nd). We
assume that the linear model (4) is obtained at the nominal opti-
mum  operating point u�(0, dn), i.e., the solution to Problem (2) with
zero offset (� = 0) and nominal disturbances dn. Let us consider the
following partitioning of the variables

y(s) =
[

ys(s)

yr(s)

]
=

[
Gs(s) G∗

s (s)

Gr(s) G∗
r (s)

]  [
us(s)

ur(s)

]
+

[
Ds(s)

Dr(s)

]
d(s) (5)

where Gs(s) is the square (nq × nq) subprocess to be controlled,
us(s) ∈ IRnq is the selected subset of MVs  used for controlling the
selected CVs ys(s) ∈ IRnq , ur(s) ∈ IRnu−nq are the remaining input
variables, which are not used for control purposes, yr(s) ∈ IRny−nq

are uncontrolled output variables (UVs), and G∗
s (s), Gr(s), G∗

r (s), Ds(s),
Dr(s) are transfer function matrices of appropriate dimensions.

Note that the partitioning in Eq. (5) depends on nq ≤ min(nu,
ny), which represents the number of controlled variables. Let
us consider the parametrization vector Z = [cO, cI , nq], where
cO = [cO1 , . . .,  cOny ] and cI = [cI1, . . .,  cInu ] are two vectors for which

each component cO
i

(or cI
j
) is a binary decision variable, and

0 < nq ≤ min(ny, nu) represents an integer variable. The subprocess
Gs(s) to be controlled can then be selected as

GZ
s (s) = TOG(s)TI (6)

with

||cO||1 = ||cI ||1 = nq, TO = nre[diag(cO)], TI = nce[diag(cI)]. (7)

The first equation in (7) is the condition to guarantee a square con-
trol problem. Note that || · ||1 is the 1-norm for vectors, i.e., the sum
of the absolute values of the elements of the vector. The matri-
ces TO and TI are selection matrices. The operator diag(c) returns
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