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a  b  s  t  r  a  c  t

A  variable  structure  control  (VSC)  method  for unstable  industrial  processes  is proposed.  The  proposed
control  method  is able  to  provide  a  highly  satisfactory  system  performance  and  to  tackle  with  robustness
issues  of  the  processes  in  the  presence  of  uncertainties.  An  ITAE-based  numerical  tuning  algorithm  for
acquiring  optimal  control  parameters,  and  a direct  auto-tuning  mechanism  for the  proposed  controller
are  also  provided.  The  performance  of  the  proposed  VSC  method  is illustrated  on  some  unstable  process
models  including  a continuous  stirred  tank  reactor  (CSTR),  in  order to show  its  effectiveness,  validity  and
feasibility.

© 2015  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Process control system designs are mostly based on PID
controllers and empirical process models [1–5]. The empirical first-
order plus time delay (FOPTD) models can describe dynamics of
many processes appropriately for control design aims. Specifically
such models are used for tuning PID controllers and stability anal-
ysis of the closed-loop processes [1]. The intuitiveness, simplicity
and good performance features of the PID (mostly PI) controllers
make them the most widely used control strategy today [6–9].
However, PID controllers, like other classical approaches, have
robustness vulnerability and may  pose performance challenges for
unstable and uncertain processes.

In recent years, there has been a great interest in control designs
for unstable processes (e.g. unstable FOPTD models) since it is
well-known that the performance specifications obtained for a
stable model cannot work for an unstable processes. Therefore,
many methods have been developed for stabilizing unstable pro-
cesses including the modified Ziegler–Nichols method [10], mirror
mapping [11], truncated predictor feedback control [12], smith
predictor based control [13], PID-based controllers [14–18], IMC
method [19,20], optimization-based methods [21,22], synthesis
method [23], sliding mode control [24,25], and the fuzzy-neural
approach [26]. Most of the above methods have additional
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adjustable parameters for obtaining controller parameters, com-
plex design procedures, and robustness issues.

The goal of this work is to develop a robust, simple and effec-
tive VSC method for unstable processes. Another aim is to provide
a direct auto-tuning algorithm for the proposed VSC system with-
out needing a secondary relay method. In the literature, there are
very few VSC systems for unstable systems while different switch-
ing control strategies similar to gain scheduling approaches can be
seen. Most of the given switched-systems have a switching strat-
egy with some PID controllers or continuous change of controller
parameters [27]. Some of the studies seen in the literature include:
variable structure PID controllers [27–30], a variable parameters
based PID controller [31,32], a controller switching between P, PD
and PID structures [33,34], and a variable parameters based con-
trol [35]. In general, these studies utilize various switching logics
to enhance the system performance under operational variations.
Some studies have also been considered a specific variable struc-
ture system, i.e. sliding mode control methodology [36–39], for the
process control systems [24,25,40–43]. In these studies, the inte-
gral sliding surface design was used for the reduced-order (FOPDT)
models of processes, and some parameter tuning structures similar
to empirical PID tuning algorithms were developed for process con-
trol systems. However, these methods require the measurement of
the derivative of the process output, and thus, can result in poor
control performances. For these reasons, this work aims to develop
a VSC method having the robustness and good response features
of the sliding mode control, and effectiveness and simplicity of
PID controllers. Since process control systems often use empirical
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models, i.e. FOPDT models, robustness and setpoint performance of
these controllers in the presence of parameter variations and dis-
turbances become important in operations [1,44]. The proposed
VSC approach with its direct auto-tuning function can solve all
these issues by providing a good setpoint response and robustness.

The organization of the study is as follows: Section 2 introduces
the proposed VSC system, some application examples of the con-
troller are given in Section 3, and finally, the conclusion of this work
is provided in Section 4.

2. The proposed variable structure controller

Some exothermic chemical reactors and biochemical reactors
are operated at open-loop unstable steady-states [45]. For open-
loop unstable systems, which are difficult to control due to the
tight tuning requirements, an appropriate controller must first sta-
bilize the system. In addition, model uncertainty, load disturbance,
measurement noise, and set-point response must all be taken into
account in a reasonable design method. A drawback of classical (e.g.
PID) controllers is that they do not consider all these aspects in a bal-
anced way [1]. More importantly, the robustness of controllers is an
unavoidable problem in classical control methods. The robustness
problem can be better addressed with a variable structure control
system.

An open-loop unstable process can be modeled with [46,47]

Y(s)
U(s)

= K

�s − 1
e−Ls (1)

where K is the static gain, � is the time constant and L is the delay.
With the use of Taylor series approach, i.e. e−Ls ≈ 1/(Ls + 1), the
unstable model (1) can be approximated to

Y(s)
U(s)

∼= K

(�s − 1)(Ls + 1)
(2)

or in the differential equation form

ÿ + ˛1ẏ + ˛0y = ˇu (3)

where ˛0 = 1/�L, ˛1 = (� − L)˛0 and  ̌ = K˛0. Now, a VSC can be
designed to stabilize error dynamics. Due to their inherently
robustness against uncertainties, the VSC systems can fit well to
such models with a suitable design. In these control methods, a
switching surface is usually designed so that the VSC drives the
error trajectories of a system onto this surface and keeps these tra-
jectories on the surface for all subsequent times. For the system (3),
a switching surface can be designed as

� = ė  + �e (4)

where e = r − y with a reference signal r(t), and � > 0 is a constant.
To bring error trajectories on this surface and keep them there, a
suitable VSC can be designed by

u = −k0y + kp|�|1/2sat(�) + u1

u̇1 = ki|�|1/2sat(�)
(5)

where k0 and kp are proportional gains, ki is an integral gain, � is
the switching surface, and sat(·) is the saturation function defined
by

sat(�) =
{

�/ |�| , if |�| ≥ 1

�, if |�| < 1
(6)

In (5), it is assumed that |u1| ≤ �3 for some �3 > 0. The block
diagram of the proposed control system is illustrated in Fig. 1.

Fig. 1. Block diagram of the proposed VSC system.

By considering the model (3), switching surface (4), and con-
troller (5), a stability analysis of the proposed VSC can be done as
follows. First, if a positive definite Lyapunov function is defined by

V = �2/2 + u2
1/2 (7)

then its derivative must be negative definite for stability,

V̇ = �
(

r̈ + �ṙ + (˛1 − �)ẏ + ˛0y − ˇu
)

− ˇu1� + u1u̇1 (8)

where it is assumed that
∣∣r̈∣∣ ≤ �2,

∣∣ṙ∣∣ ≤ �1, |y| ≤ �0 for some posi-
tive numbers �0, �1 and �2. From (6), it is clear that the controller
consists of outer and inner parts. For the outer part of the controller,
i.e. for |�| ≥ 1,

V̇ = �
(

r̈ + �ṙ + (˛1 − �)ẏ + (ˇk0 − ˛0)y − ˇkp|�|1/2sgn(�)
)

+ ϕ0

(9)

where the function ϕ0 can be written as

ϕ0 = −ˇu1� + kiu1|�|1/2sgn(�)

= −ˇu1�
(

1 − |�|−1/2
)

= −εˇu1�

(10)

where 0 ≤ ε < 1 and it is assumed that ki =  ̌ for simplicity. Substi-
tuting (10) into (9) results in

V̇ = �
(

r̈ + �ṙ + (˛1 − �)ẏ + (ˇk0 − ˛0)y − ˇkp|�|1/2sgn(�)
)

+ ϕ0

≤
(∣∣r̈∣∣ + �

∣∣ṙ∣∣ + εˇ |u1| − ˇkp|�|1/2
)

|�|
≤

(
�2 + ��1 + εˇ�3 − ˇkp|�|1/2

)
|�|

= −
(

ˇkp|�|1/2 − �̂
)

|�|

(11)

where �̂ = �2 + ��1 + εˇ�3, � ≥ ˛1 and k0 = ˛0/  ̌ = 1/K.  Since |�| ≥
1, if we choose kp > �̂/ˇ,  then V̇ < 0. Namely, whenever |�| ≥ 1,∣∣�(t)

∣∣ will strictly decrease until it reaches the set |�| < 1 in finite
time and remains inside the set subsequently. For the inner part of
the controller, i.e. inside the set |�| < 1, the Eq. (8) can similarly be
written as

V̇ = �(r̈ + �ṙ + (˛1 − �)ẏ + (ˇk0 − ˛0)y − ˇkp|�|1/2�) + ϕ1 (12)

with

ϕ1 = −ˇu1� + kiu1|�|1/2�

= −ˇu1�(1 − |�|1/2)

= −ε1ˇu1�

(13)

where 0 < ε1 < 1 and again it is assumed that ki =  ̌ for simplicity.
Finally,

V̇ ≤ �̄ |�| − ˇkp|�|5/2

≤ −
(

1 − �
)

ˇkp|�|5/2
(14)

where 0 < � < 1. The inequality (14) is satisfied for all

|�| ≥
(

�̄

�ˇkp

)2/3

(15)

Hence, the trajectory reaches the ultimate bound set  ̇ ={
|�| <

(
�̄/(�ˇkp)

)2/3
, |�| < 1

}
in finite time. This means that the
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