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a b s t r a c t

A new fractional two dimensional triangle function combination discrete chaotic map (2D-TFCDM) is
proposed by utilizing the discrete fractional calculus. Furthermore, the chaos behaviors are numerically
discussed in the fractional-order difference. The bifurcation diagrams, the largest Lyapunov exponent plot
and the phase portraits are shown, respectively. With the keys produced by elliptic curve in finite field,
the discrete fractional map is converted into algorithm, and applied to color image encryption. The image
encryption method is first proposed by us worldwide.
� 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In the past decade, the discrete dynamic behavior and its appli-
cations has been given a lot of attention in various applied areas
owing to its potential applications in secure communication field
[1,2]. On the basis of the time scale theory [3], Atici et al. has pro-
posed the discrete fractional calculus (DFC) [4–6] to describe the
dynamics of the discrete time, some results have been reported.
The discrete memory effect of the system indicates that the
momentum xðnÞ depends on the past information
xð0Þ; . . . ; xðn� 1Þ. There are many methods designed for the frac-
tional difference models to prove that the DFC is an efficient tool
to discretize the chaotic systems with a memory effect [10–12].
Wu and Baleanu [13–15] focus on applications of the discrete frac-
tional calculus on an arbitrary time scale and utilized the theories
of delta difference equations to reveal the discrete chaos behavior.

In order to understand the background of the discrete dynamics
behaviors, our primary objective is to introduce applications of the
discrete fractional calculus on an arbitrary time scale [4–6] and uti-
lize the theories of delta difference equations to expose the dis-
crete chaos behaviors of the fractionalized map. Some others
refer to the applications of fractional fourier transform and frac-
tional differential equations [7–9].

Public key cryptography (asymmetric cryptography) is a famous
techniques for many years [16]. Strong public-key cryptography is
often considered to be too computationally expensive for small

devices if not accelerated by cryptographic hardware. Elliptic
curves are popular settings for building efficient public key cryp-
tosystems. Elliptic curve cryptography (ECC) is an popular effective
public key cryptography techniques. ECC has many advantages,
such as small storage capacity, faster computations and reduction
of the power consumption [17]. Menezes Vanstone Elliptic Curve
Cryptosystem (MVECC) was one of the famous techniques that
used ECC and gave security for the data [18]. We take use of this
technique in our paper and make it more adapted to image encryp-
tion and security.

There are many encryption methods proposed recently, such as
[19–24]. Some others make use of fractional differential equation,
like fractional logistic maps [25], fractional-order chaos systems
[26] and fractional form of hyperchaotic system[27]. In [28],
fractional-order difference has been proposed to apply in the
image encryption based on fractional chaotic time series, while
the new encryption method which utilizes two dimensional chao-
tic map based on fractional-order difference has seldom been
proposed.

Our main aim is to introduce a new two dimensional discrete
chaotic map on the basis of fractional-order difference and apply
the map to information security. The paper is organized as follows:
In Section 2, the definitions and the properties of the DFC are intro-
duced. In Section 3, we provide the introduction of elliptic curve in
finite field. The working mechanism of the Menezes-Vanstone
Elliptic Curve Cryptosystem is described in Section 4. Then, in the
next section, we present fractional 2D-TFCDM and standard map
on time scales from the discrete integral expression. The bifurca-
tion diagrams, the largest Lyapunov exponent plot and the phase

http://dx.doi.org/10.1016/j.aci.2017.07.002
2210-8327/� 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail addresses: liuzeyu_90@163.com (Z. Liu), xiatc@t.shu.edu.cn (T. Xia).

Applied Computing and Informatics xxx (2017) xxx–xxx

Contents lists available at ScienceDirect

Applied Computing and Informatics

journal homepage: www.sciencedirect .com

Please cite this article in press as: Z. Liu, T. Xia, Applied Computing and Informatics (2017), http://dx.doi.org/10.1016/j.aci.2017.07.002

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.aci.2017.07.002
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:liuzeyu_90@163.com
mailto:xiatc@t.shu.edu.cn
http://dx.doi.org/10.1016/j.aci.2017.07.002
http://www.sciencedirect.com/science/journal/22108327
http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.aci.2017.07.002


portraits of the map are also displayed while the difference orders
and the initial points are changed. In Section 6, we display the
applications of fractional 2D-TFCDM with the Menezes-Vanstone
Elliptic Curve Cryptosystem in the image encryption. In Section 7,
the results of applications in part VI are analyzed. At last, some
conclusions are given.

2. Preliminaries

First, let us briefly revisit the definitions of the fractional sum
and difference. Considering the DFC, the function f ðtÞ is changed
as a sequence f ðnÞ. Let Na denotes the isolated time scale and
Na ¼ fa; aþ 1; aþ 2; . . .g (a 2 R fixed). The difference operator D
is defined as Df ðnÞ ¼ f ðnþ 1Þ � f ðnÞ.

Definition 2.1 (See [4]). Let u : NaR and 0 < m be given. Then the
fractional sum of m order is defined by

D�m
a uðtÞ :¼ 1

CðmÞ
Xt�m
s¼a

ðt � s� 1Þm�1uðsÞ; t 2 Naþm; ð1Þ

where a is the starting point, tðmÞ is the falling function defined as

tðmÞ ¼ Cðt þ 1Þ
Cðt þ 1� mÞ : ð2Þ

Definition 2.2 (See [29]). For 0 < m; m R N and uðtÞ defined on Na,
the Caputo-like delta difference is defined by

CDm
auðtÞ :¼ D�ðm�mÞ

a DmuðtÞ

¼ 1
Cðm� mÞ

Xt�ðm�mÞ
s¼a

ðt � s� 1Þðm�m�1ÞDmuðsÞ;

t 2 Naþm�m; m ¼ ½m� þ 1; ð3Þ
where m is the difference order.

Theorem 2.3 (See [30]). For the delta fractional difference equation

CDm
auðtÞ ¼ f ðt þ m� 1;uðt þ m� 1ÞÞ; DkuðaÞ ¼ uk;

m ¼ ½m� þ 1; k ¼ 0; . . . ;m� 1 ð4Þ
the equivalent discrete integral equation can be obtained as

xðnÞ ¼ u0ðtÞ þ 1
CðmÞ

Xt�m
s¼aþm�m

ðt � s� 1Þðm�1Þ

� f ðsþ m� 1;uðsþ m� 1ÞÞ; t 2 Naþm; ð5Þ

where the initial iteration reads

u0ðtÞ ¼
Xm�1

k¼0

ðt � aÞðkÞ
k!

DkuðaÞ: ð6Þ

The complex difference equation with long-term memory is obtained.
Set the difference order m = 1, it can reduce to the classical one, but
the integer one doesn’t hold the discrete memory. The domain is chan-
ged from Naþm�m to Naþm in Eqs. (6)–(8), and the function uðtÞ is pre-
served to define on the isolated time scale Na in the fractional sums.
Obviously, the discrete fractional calculus is a crucial tool in the initial-
ization of the fractional difference equations.

3. Introduction to elliptic curve

Definition 3.1. An elliptic curve E defined over a prime field Fp is

E : y2 � x3 þ axþ bðmod pÞ ð7Þ

where a; b 2 Fp;p– 2;3 for which 4a3 þ 27b2 – 0. The elliptic curve
group EðFpÞ denotes the set of points ðx; yÞ that satisfy the elliptic
curve Eq. (10) together with a special point O at infinity [31].

3.1. Elliptic curve operations

Assume P ¼ ðx1; y1Þ;Q ¼ ðx2; y2Þ 2 EðP – QÞ; E is defined in Eq.
(10). Then R ¼ ðx3; y3Þ ¼ P þ Q 2 E is defined as follows [16,31]:

P þ Q ¼ R ¼ ðx3; y3Þ; P – � Q ;

O; x1 ¼ x2ðmod pÞ; y1 þ y2 ¼ 0ðmod pÞ:

�
ð8Þ

where

x3 � ðk2 � 2x1Þðmod pÞ;
y3 � ðkðx1 � x3Þ � y1Þðmod pÞ: ð9Þ

and

k ¼
ðy2 � y1Þ
ðx2 � x1Þ ; P – Q ;

3x21 þ a
2y1

; P ¼ Q :

8>>><
>>>: ð10Þ

If k 2 Z and P ¼ ðx; yÞ 2 E. The scalar multiplication can be
defined by

kP ¼ P þ P þ � � � þ P|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
k�times

ð11Þ

Let P ¼ ðx; yÞ, then the negative of the point P is Q ¼ �P ¼ ðx;�yÞ
where P þ Q ¼ O [16,31].

Definition 3.2. The order of an elliptic curve is defined as the
number of points lies on the curve and denoted by #E [31].

Definition 3.3. Let P be an element of the elliptic curve group
EðFpÞ, then P is a generator point if ordðPÞ ¼ #E [31] (ordðPÞ is the
smallest positive integer n such that nP ¼ O).

4. Menezes-Vanstone Elliptic Curve Cryptosystem (MVECC)

When user A wants to send a message x ¼ ðx1; x2Þ 2 Z�
p � Z�

p to
user B, they need firstly to reach an agreement in the elliptic curve
EðFpÞ and the base point a. Every party should choose a private key
randomly, d for user A and k for user B (05d; k < ordðaÞ), and com-
putes their public key b ¼ d � a and y0 ¼ k � a. User A computes the
secret key ðc1 � c2Þ by formula (15)

ðc1 � c2Þ ¼ d � y0 ¼ d � k � a ¼ k � b ð12Þ
Then the ciphered message is calculated by

y1 ¼ x1 � c1mod p

y2 ¼ x2 � c2mod p
ð13Þ

And the ciphertext fy0; ðy1; y2Þg is sent to user B. When user Bwants
to decrypt the ciphertext ðy1; y2Þ, he needs firstly to compute the
secret key by k � b ¼ k � d � a ¼ ðc1; c2Þ, then computes the following

x1 ¼ y1 � c�1
1 mod p

x2 ¼ y2 � c�1
2 mod p

ð14Þ

to get the original message x ¼ ðx1; x2Þ [18].
Any adversary who knows b and y0 only without the private

keys d and k is very difficult to solve the ECDLP and get the mes-
sage x. Moreover, if #E have only one big prime divisor, solving
the ECDLP is more difficult [31]. So, MVECC is an efficient and
secure technique.
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