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a b s t r a c t 

Background and Objectives: lung cancer is the leading cause of cancer-related deaths in the world, and 

its poor prognosis varies markedly according to tumor staging. Computed tomography (CT) is the imag- 

ing modality of choice for lung cancer evaluation, being used for diagnosis and clinical staging. Besides 

tumor stage, other features, like histopathological subtype, can also add prognostic information. In this 

work, radiomics-based CT features were used to predict lung cancer histopathology and metastases us- 

ing machine learning models. Methods: local image datasets of confirmed primary malignant pulmonary 

tumors were retrospectively evaluated for testing and validation. CT images acquired with same proto- 

col were semiautomatically segmented. Tumors were characterized by clinical features and computer at- 

tributes of intensity, histogram, texture, shape, and volume. Three machine learning classifiers used up to 

100 selected features to perform the analysis. Results: radiomics-based features yielded areas under the 

receiver operating characteristic curve of 0.89, 0.97, and 0.92 at testing and 0.75, 0.71, and 0.81 at valida- 

tion for lymph nodal metastasis, distant metastasis, and histopathology pattern recognition, respectively. 

Conclusions: the radiomics characterization approach presented great potential to be used in a computa- 

tional model to aid lung cancer histopathological subtype diagnosis as a “virtual biopsy” and metastatic 

prediction for therapy decision support without the necessity of a whole-body imaging scanning. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Lung cancer accounts for one-third of all cancer-related deaths 

in the United States, with the highest mortality of all cancers [1] . 

The prognosis of lung cancer is still poor and varies markedly ac- 

cording to tumor staging at diagnosis. Tumor stage at presenta- 

tion, as designated by the tumor-node-metastasis system (TNM - 

describes the anatomical extent of disease based on assessment 

of three components: extent of the primary tumor (T), absence or 

presence and extent of regional lymph node metastasis (N), and 

absence or presence of distant metastasis (M)), is the most impor- 

tant prognostic factor and may determine therapy [2] . 

However, studies showed that clinical decision making may be 

influenced by other tumor aspects, such as, the histopathologi- 

cal subtype of the lesion [3] . In clinical practice, lung cancer can 

be classified in two main categories: non-small cell lung cancer 
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(NSCLC) and small cell lung cancer (SCLC). NSCLC comprehends 

85% of the cases and is mainly subclassified in adenocarcinoma 

(ADC), squamous cell carcinoma (SCC), and large cell carcinoma 

(LCC). 

Besides tumor histology and staging, it has been described 

that other computed tomography (CT) features may also influ- 

ence prognosis and response to therapy [2,4,5] . However, those 

features are typically described subjectively, qualitatively or semi- 

quantitatively, e.g. non-solid, semi-solid, or solid nodules; and sin- 

gle 2D measure of greatest diameter on axial plane. Furthermore, 

subtypes of ADC, SCC, and SCLC may present visual CT features 

that are similar to benign lesions [6] . 

Computer-aided detection/diagnosis (CAD) tools have been de- 

veloped to aid specialists interpret medical imaging findings and 

identify early diseases, especially breast and lung tumors [7–9] . 

The purpose of CAD is to improve the accuracy and consistency of 

medical image diagnosis through computational support used as 

reference [10] . Traditionally, CAD systems provide a single answer 

(presence of a cancer, for instance) as a second opinion to special- 
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ists. They have not been developed to provide prognostic data and 

aid decision making of therapy. 

On the other hand, radiomics is an extension of CAD that con- 

verts imaging data into a high dimensional feature space, which 

may ultimately correlate with clinical outcomes [11,12] . Moreover, 

radiomics involves extracting image features and combining them 

with other patient data, as available, to increase the power of deci- 

sion support models [9] . In other words, radiomics is a data corre- 

lation process that recognizes diagnostic and prognostic outcome 

patterns based on qualitative and quantitative features combined 

with patient clinical descriptors. 

Several qualitative and semi-quantitative (attenuation, hetero- 

geneity, spiculation, location, size, shape, margins, calcification, 

cavitation and so on) and quantitative (shape, gray-level intensity, 

histogram, cooccurrence matrix texture, run-length matrix texture, 

wavelet decomposition, standardized uptake value statistics and so 

on) image features have been used to characterize malignant lung 

tumors [2,4,5,11–17] . However, a gold standard radiomic pattern for 

tumor characterization remains challenging. 

In this context, the goal of this work is to assess the correlation 

of radiomics-based features obtained in CT images with tumors 

histology and presence of lymph node and distant metastases. Our 

main purpose is to build a radiomics model that potentially may 

aid specialists on lung cancer histological subclassification and de- 

cision making of therapy based on metastases status. In this work, 

we also aim to compare the performance of fine-tuned recognition 

of metastatic and histopathological patterns using different feature 

categories (clinical, computer, and both combined), machine learn- 

ing classifiers (a probabilistic, an instance-based, and an artificial 

neural network), and (balanced and unbalanced) datasets for train- 

ing. 

The remainder of this paper is organized as follows: 

Section 2 describes material and methods used in this work, 

or more specifically, the radiomics processes of image acquisition 

in Section 2.1 , image segmentation in Section 2.2 , feature extrac- 

tion in Section 2.3 , feature selection in Section 2.4 , and tumor 

classification in Section 2.5 . Results are presented in Section 3 and 

discussed in Section 4 . Finally Section 5 concludes this article. 

2. Material and methods 

2.1. Image acquisition 

Our institutional research board approved this retrospective 

study with a waiver of patients’ informed consent. We analyzed 

68 (52 for testing and 16 for validation) malignant lung tumors 

with histology confirmed by biopsy or surgical resection (Tables 1 

and 2 of supplementary material). Thin-slice contrast-enhanced CT 

images were acquired in a multidetectors CT scanner, after intra- 

venous administration of iodinated contrast media, using volumet- 

ric acquisition with slice thickness and reconstruction interval of 

1–1.5 mm. 

Our lung cancer tumor database has 90 cases, but 18 of them 

were not acquired with the standard contrast-enhanced CT proto- 

col, which would influence in image characterization process, 2 of 

them did not present all clinical data, and 2 of them presented 

other opacities attached to the tumor, which would influence in 

the image segmentation process. Therefore, we excluded those 22 

cases from the analysis. 

2.2. Image segmentation 

Manual segmentation of tumors in medical imaging is a labor- 

intensive and time-consuming task, which limits the amount of 

cases that can be processed [18,19] . Hence all 68 tumors were 

semiautomatically segmented by the 3D region growing GrowCut 

algorithm from the medical image analysis and visualization Slicer 

platform v4.3.1 ( Fig. 1 ) [20] . GrowCut was first validated with 

glioblastoma multiforme in magnetic resonance imaging [21] and 

then with lung tumors in CT scans [22] . 

In this work, we first marked two regions, one inside and one 

outside the tumor ( Fig. 1 (a)), on three slices of the CT exam, one 

slice for each anatomical plane, using a lung window with level 

of -500 and width of 1400. After that, an interactive region grow- 

ing procedure based on cellular automaton detected tridimension- 

aly the tumor tissue ( Fig. 1 (b)), by labeling voxels of a convex hull 

of the regions with a 5% additional margin [21] . Voxel labeling is 

done using a weighted similarity score, which is a function of the 

neighboring voxel weights, and continues iteratively until a stable 

configuration is reached when modification of the voxel labels is 

no longer possible. An unlabeled voxel is labeled corresponding to 

the neighboring voxels that have the highest weights [22] . Next we 

removed the outside mark of the tumor ( Fig. 1 (c)), and modeled 

the boundary outline ( Fig. 1 (d)). Finally the tumor outline was ex- 

ported as a Digital Imaging and Communications in Medicine radi- 

ation therapy (DICOM-RT) structure set file [23] , to be used in the 

extraction of computer features, as follows. 

2.3. Feature extraction 

Tumors were characterized by 2277 quantitative features ex- 

tracted from segmented images. Features of gray-level intensity, 

histogram, cooccurrence matrix (COM), run-length matrix (RLM), 

neighborhood intensity difference matrix (NIDM), Laplacian of 

Gaussian (LOG) filtered statistics, and shape were extracted by 

the IBEX radiomics platform v1.0 [24] . Histogram, COM, RLM, and 

NIDM features were calculated on 8-bit converted CT images to 

prevent sparsely populated matrices and histogram from being 

produced. 8-bit image quantization may also ultimately reduce the 

effect of potential noise in CT for soft tissue and tumor on the tex- 

ture features [15–17,25] . 

2.3.1. Intensity features 

Gray-level intensity features describe the distribution of values 

of individual voxels from a volume of interest (VOI) without con- 

cern for spatial relationships [9] . A total of 53 first-order inten- 

sity features were calculated in this work: energy, global maxi- 

mum, global mean, global median, global minimum, global stan- 

dard deviation, inter quartile range, kurtosis, local entropy max- 

imum, local entropy mean, local entropy median, local entropy 

minimum, local entropy standard deviation, local range maximum, 

local range mean, local range median, local range minimum, lo- 

cal range standard deviation, local standard deviation maximum, 

local standard deviation mean, local standard deviation median, 

local standard deviation minimum, local standard deviation stan- 

dard deviation, mean absolute deviation, median absolute devia- 

tion, percentile, quantile, range, root mean square, skewness, and 

variance [11,24] . Percentile features varied according to the inter- 

val of 5–95 with an incremental of 5, and quantile of 0.025, 0.25, 

0.50, 0.75, and 0.975. Local entropy features used neighborhood of 

size 9 pixels, and local range and local standard deviation features 

used neighborhoods of size 5 pixels [17] . 

2.3.2. Histogram features 

Gray-level histogram features are calculated from a first-order 

histogram that represents a particular VOI by tabulating the num- 

ber of voxels within a particular value (in this work, 256 bins of 

16 Hounsfield units) [16] . A total of 51 histogram features were 

used: entropy, uniformity, inter quartile range, kurtosis, mean ab- 

solute deviation, median absolute deviation, percentile, percentile 

area, quantile, range, and skewness [24] . Percentile and percentile 
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