
Computer Science Review 27 (2018) 61–87

Contents lists available at ScienceDirect

Computer Science Review

journal homepage: www.elsevier.com/locate/cosrev

Review article

Generalizing input-driven languages: Theoretical and practical
benefits
Dino Mandrioli a, Matteo Pradella a,b,*
a DEIB, Politecnico di Milano, via Ponzio 34/5, 20133 Milano, Italy
b IEIIT, Consiglio Nazionale delle Ricerche, via Ponzio 34/5, 20133 Milano, Italy

a r t i c l e i n f o

Article history:
Received 16 March 2017
Received in revised form 25 September
2017
Accepted 4 December 2017

Keywords:
Regular languages
Context-free languages
Input-driven languages
Visibly pushdown languages
Operator-precedence languages
Monadic second order logic
Closure properties
Decidability and automatic verification

a b s t r a c t

Regular languages (RL) are the simplest family in Chomsky’s hierarchy. Thanks to their simplicity they
enjoy various nice algebraic and logic properties that have been successfully exploited inmany application
fields. Practically all of their related problems are decidable, so that they support automatic verification
algorithms. Also, they can be recognized in real-time.

Context-free languages (CFL) are anothermajor familywell-suited to formalize programming, natural,
and many other classes of languages; their increased generative power w.r.t. RL, however, causes the
loss of several closure properties and of the decidability of important problems; furthermore they need
complex parsing algorithms. Thus, various subclasses thereof have been defined with different goals,
spanning from efficient, deterministic parsing to closure properties, logic characterization and automatic
verification techniques.

Among CFL subclasses, so-called structured ones, i.e., those where the typical tree-structure is visible
in the sentences, exhibit many of the algebraic and logic properties of RL, whereas deterministic CFL have
been thoroughly exploited in compiler construction and other application fields.

After surveying and comparing the main properties of those various language families, we go back
to operator precedence languages (OPL), an old family through which R. Floyd pioneered deterministic
parsing, and we show that they offer unexpected properties in two fields so far investigated in totally
independent ways: they enable parsing parallelization in amore effective way than traditional sequential
parsers, and exhibit the same algebraic and logic properties so far obtained only for less expressive
language families.

© 2017 Elsevier Inc. All rights reserved.

Contents

1. Introduction... 62
2. Regular languages ... 63

2.1. Logic characterization .. 63
3. Context-free languages... 66

3.1. Parsing context-free languages ... 67
3.1.1. Parsing context-free languages deterministically .. 69

3.2. Logic characterization of context-free languages .. 70
4. Structured context-free languages .. 70

4.1. Parenthesis grammars and languages .. 71
4.2. Input-driven or visibly pushdown languages .. 72

4.2.1. The logic characterization of visibly pushdown languages ... 73
4.3. Other structured context-free languages ... 74

4.3.1. Balanced grammars .. 74
4.3.2. Height-deterministic languages .. 74

5. Operator precedence languages... 75
5.1. Algebraic and logic properties of operator precedence languages ... 77

5.1.1. Operator precedence automata ... 78

* Corresponding author at: DEIB, Politecnico di Milano, via Ponzio 34/5, 20133 Milano, Italy.
E-mail addresses: dino.mandrioli@polimi.it (D. Mandrioli), matteo.pradella@polimi.it (M. Pradella).

https://doi.org/10.1016/j.cosrev.2017.12.001
1574-0137/© 2017 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.cosrev.2017.12.001
http://www.elsevier.com/locate/cosrev
http://www.elsevier.com/locate/cosrev
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cosrev.2017.12.001&domain=pdf
mailto:dino.mandrioli@polimi.it
mailto:matteo.pradella@polimi.it
https://doi.org/10.1016/j.cosrev.2017.12.001

62 D. Mandrioli, M. Pradella / Computer Science Review 27 (2018) 61–87

5.1.2. Operator precedence vs other structured languages ... 80
5.1.3. Closure and decidability properties... 81
5.1.4. Logic characterization .. 81

5.2. Local parsability for parallel parsers ... 84
6. Concluding remarks .. 85

Acknowledgments .. 86
References ... 86

1. Introduction

Regular (RL) and context-free languages (CFL) are by far the
most widely studied families of formal languages in the rich liter-
ature of the field. In Chomsky’s hierarchy, they are, respectively,
in positions 2 and 3, 0 and 1 being recursively enumerable and
context-sensitive languages.

Thanks to their simplicity, RL enjoy practically all positive prop-
erties that have been defined and studied for formal language fam-
ilies: they are closed under most algebraic operations, and most
of their properties of interest (emptiness, finiteness, containment)
are decidable. Thus, they found fundamental applications in many
fields of computer and system science: HW circuit design andmin-
imization, specification anddesign languages (equippedwith pow-
erful supporting tools), automatic verification of SW properties,
etc. One of theirmost relevant applications is nowmodel-checking
which exploits the decidability of the containment problem and
important characterizations in terms of mathematical logics [1,2].

On the other hand, the typical linear structure of RL sentences
makes them unsuitable or only partially suitable for application
in fields where the data structure is more complex, e.g., is tree-
like. For instance, in the field of compilation they are well-suited
to drive lexical analysis but not to manage the typical nesting
of programming and natural language features. The classical lan-
guage family adopted for this type of modeling and analysis is the
context-free one. The increased expressive power of CFL allows
to formalize many syntactic aspects of programming, natural, and
various other categories of languages. Suitable algorithms have
been developed on their basis to parse their sentences, i.e., to build
the structure of sentences as syntax-trees.

General CFL, however, lose various of the nice mathematical
properties of RL: they are closed only under some of the algebraic
operations, and several decision problems, typically the inclusion
problem, are undecidable; thus, the automatic analysis and syn-
thesis techniques enabled for RL are hardly generalized to CFL.
Furthermore, parsing CFL may become considerably less efficient
than recognizing RL: the present most efficient parsing algorithms
of practical use for general CFL have an O(n3) time complexity.

The fundamental subclass of deterministic CFL (DCFL) has been
introduced, and applied to the formalization of programming lan-
guage syntax, to exploit the fact that in this case parsing is in O(n).
DCFL, however, do not enjoy enough algebraic and logic properties
to extend to this class the successful applications developed for RL:
e.g., although their equivalence is decidable, containment is not;
they are closed under complement but not under union, intersec-
tion, concatenation and Kleene ∗.

From this point of view, structured CFL are somewhat in be-
tween RL and general CFL. Intuitively, by structured CFL we mean
languages where the structure of the syntax-tree associated with
a given sentence is immediately apparent in the sentence. Paren-
thesis languages (PL) introduced in a pioneering paper by Mc-
Naughton [3] are the first historical example of such languages.
McNaughton showed that they enjoy closure under Boolean op-
erations (which, together with the decidability of the emptiness
problem, implies decidability of the containment problem) and
their generating grammars can be minimized in a similar way as

finite state automata (FSA) are minimized (in fact an equivalent
formalism for parenthesis languages are tree automata [4,5]).

Starting from PL various extensions of this family have been
proposed in the literature, with the main goal of preserving most
of the nice properties of RL and PL, yet increasing their genera-
tive power; among them input-driven languages (IDL) [6,7], later
renamed visibly pushdown languages (VPL) [8] have been quite
successful: the attribute Input-driven is explained by the property
that their recognizing pushdown automata can decide whether to
apply a push operation, or a pop one to their pushdown store or
leaving it unaffected exclusively on the basis of the current input
symbol; the attribute visible, instead, refers to the fact that their
tree-like structure is immediately visible in their sentences.

IDL, alias VPL, are closed under all traditional language oper-
ations (and therefore enjoy the consequent decidability proper-
ties). Also, they are characterized in terms of a monadic second
order (MSO) logic by means of a natural extension of the classic
characterization for RL originally and independently developed by
Büchi, Elgot, and Trakhtenbrot [9–11]. For these reasons they are a
natural candidate for extending model checking techniques from
RL. To achieve such a goal in practice, however, MSO logic is not
yet tractable due to the complexity of its decidability problems;
thus, some research is going on to ‘‘pair’’ IDL with specification
languages inspired by temporal logic as it has been done for RL [12].

Structured languages do not need a real parsing, since the
syntax-tree associatedwith their sentences is already ‘‘embedded’’
therein; thus, their recognizing automata only have to decide
whether an input string is accepted or not, whereas full parsers
for general CFL must build the structure(s) associated with any
input string which naturally supports its semantics (think, e.g., to
the parsing of unparenthesized arithmetic expressions where the
traditional precedence of multiplicative operators over the addi-
tive ones is ‘‘hidden’’ in the syntax of the language.) This property,
however, severely restricts their application field as the above
example of arithmetic expressions immediately shows.

Rather recently, we resumed the study of an old class of lan-
guages which was interrupted a long time ago, namely operator
precedence languages (OPL). OPL and their generating grammars
(OPG) have been introduced by Floyd [13] to build efficient de-
terministic parsers; indeed they generate a large and meaningful
subclass of DCFL. We can intuitively describe OPL as ‘‘input driven
but not visible’’: they can be claimed as input-driven since the
parsing actions on their words – whether to push or pop – depend
exclusively on the input alphabet and on the relation defined
thereon, but their structure is not visible in their words: e.g., they
can include unparenthesized expressions.

In the past their algebraic properties, typically closure under
Boolean operations [14], have been investigatedwith themain goal
of designing inference algorithms for their languages [15]. After
that, their theoretical investigation has been abandoned because
of the advent of more powerful grammars, mainly LR ones [16,17],
that generate all DCFL (although some deterministic parsers based
on OPL’s simple syntax have been continuously implemented at
least for suitable subsets of programming languages [18]).

The renewed interest in OPG and OPL has been ignited by
two seemingly unrelated remarks: on the one hand we realized

Download English Version:

https://daneshyari.com/en/article/6891663

Download Persian Version:

https://daneshyari.com/article/6891663

Daneshyari.com

https://daneshyari.com/en/article/6891663
https://daneshyari.com/article/6891663
https://daneshyari.com

